Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Physics (4PH0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2018
Publications Code 4PHO_1P_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	one mark for each correct label;;;	allow 'Sun' for star named planet / 'Earth' for planet	3
(b)	arrow direction from moon towards Earth;	judge by eye ignore starting position of arrow	1
(c)	galaxy / universe;	accept known galaxies e.g. milky way, andromeda	1

Total for question $1=5$ marks

Question number	Answer	Notes	Marks
2 a	1 mark for each word gravitational; kinetic; kinetic; elastic/thermal;	this order only	4
b (i)	any three from: MP1.measure an initial length; MP2.measure an extended length; MP3. extension is the difference between extended length and initial length; MP4.use of a ruler; MP5. detail to improve quality of measurements taken;	e.g. - original length of spring - distance from bottom of spring to bench allow use of a caliper e.g. - take measurements from the same points on the spring each time - described use of a fiducial marker - placing ruler with 0 at bottom of spring	3
b (ii)	straight line of positive gradient throughout; line passes through origin;	reject curve at end of line unless straight section clearly identified as Hooke's Law region	2

Total for question $2=9$ marks

Question number	Answer	Notes	Marks
3 (a) (i)	power = current \times voltage;	allow standard symbols and rearrangements e.g. $P=I \times V$ reject C / A for current, W for power	1
(ii)	substitution OR rearrangement; evaluation to at least 2 s.f.;	must be seen bald answer with no supporting working only gets 1 mark	2
	$\begin{aligned} & \text { e.g. } \\ & 1800=I \times 230 \text { OR } \quad(\mathrm{I}=) 1800 / 230 \\ & (\mathrm{I}=) 7.826 \ldots(\mathrm{~A}) \end{aligned}$		
(iii)	D-13 A; this is the only value above the quoted current		1
	A..... this is a common fuse value but lower than the current of 8A hence it will not work		
	B..... this is a common fuse value but lower than the current of 8A hence it will		
	not work C.... this is not a common fuse value and is lower than the current of 8 A hence it will not work		

Question number	Answer	Notes	Marks
(b) (i)	idea that alternating current is (continuously) changing direction; idea that direct current only in one direction / does not change direction; battery / cell;	allow marks if shown in labelled diagrams e.g. DC allow 'current travels backwards and forwards' / 'current is positive and negative' - condone different directions allow dynamo / suitable named cell e.g. solar panel, power bank	2

Total for question $3=7$ marks

Question number	Answer	Notes	Marks
4	any four from: MP1. measure / find mass; MP2. using a balance; MP3. measure / find volume; MP4. using a displacement method (to find volume); MP5. a suitable experimental precaution; AND MP6. (formula to use density $=$) mass / volume;	allow marks if clear from labelled diagram allow weighing scale allow any correct formula for volume e.g. - object tied to thread - awareness of meniscus - measure at eye level - repeat readings - take average - zero balance - balance on horizontal surface - avoid splashing water - measure mass before volume must be this rearrangement allow symbols	5

Total for question $4=5$ marks

Question number	Answer	Notes	Marks
5 (a) (i)	use the half cm scale / mm scale;	ignore 'more decimal places' etc. ignore all responses about quality ignore repeating /averaging e.g. (ii) move ruler closer to wire - place wire on ruler - use of set squares accept zero	any three from: MP1. named method of reducing parallax error; MP2. straighten wire; MP3. start measurement from integer on the ruler; MP4. make sure ruler is parallel to wire;

Question number	Answer		tes	Marks
(b) (i)	reference to temperature of the wire changing; (preventing) a change in resistance;	e.g. wire getting hot / melting ignore references to control variables reject incorrect physics		2
(ii)	any two from: MP1.extend the range of lengths; MP2.fill in gap in results; MP3.take repeats and average; MP4.take results at smaller intervals;	if no other MP seen, then award 1 mark for unqualified 'more lengths' allow repeat to check for anomalies		2
(iii)	scale on both axes; label on both axes with units; plotting;;	linear scale using at least 50% of the squares ignore orientation tolerance is + /- 0.5 square -1 for each error		4
		$\begin{aligned} & \text { Length of wire } \\ & \text { in } \mathrm{cm} \end{aligned}$	$\begin{gathered} \text { Resistance } \\ \text { in ohms } \end{gathered}$	
		10	2.8	
		15	4.5	
		20	6.1	
		50	14.9	
		55	16.3	
		60	18.0	
		65	19.4	
(iv)	suitable straight line of best fit passing no more than 1 square from any point;	line does not need to extend beyond plotted points		1
(v)	simple pattern statement; e.g. as length increases resistance increases additional detail; e.g. linear relationship	ignore positive correlation		2
		(directly) proportional scores both marks		

Total for question $5=15$ marks

Question number	Answer	Notes	Marks
6 a	C-radio; this has the longest wavelength A-this has the shortest wavelength B-this has a shorter wavelength than radio D-this has a shorter wavelength than radio		1
b	any two from: MP1. (same) speed; (waves); MP2. (all) transverse (wasum; MP3. (can all) travel through vacuum; MP4. (all) transfer energy;	allow $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	2

	Answer	Notes	Marks
c	for three named parts of the spectrum 1 use and 1 harmful effect max. gamma use; - radiotherapy - sterilising medical equipment / food - (radioactive) tracers gamma harmful effect; - causes cancer / cell mutation x-ray use; - observing internal structure of the body/eq x-ray harmful effect; - causes cancer / cell mutation ultraviolet use; - fluorescent lamps - treating skin disorders - killing bacteria ultraviolet harmful effect; - damage to skin (cells) - blindness visible use; - optical fibres - photography visible harmful effect; - eye damage (at high intensity) infrared use; - short range communication e.g. remote controls - heaters - night vision equipment infrared harmful effect; - burns skin/tissue microwave use; - cooking - satellite communications microwave harmful effect; - internal heating of body tissue radio use; - communications;	allow treating cancer damage is not sufficient kills cells damage is not sufficient allow tanning, security allow sunburn, skin cancer allow cataracts ignore sunburn ignore 'damage' allow internal burns	6

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks

\hline 7 a (i) \& acceleration = change in velocity / time (taken); \& allow standard symbols and rearrangements e.g. $a=(v-u) / t$ \& 1

\hline \multirow[t]{2}{*}{(ii)} \& substitution; evaluation; unit; \& \& 3

\hline \& ```
e.g.
(acceleration =) 6.1(-0) / 0.62
(acceleration =) 9.8
m/s

``` & allow 10, 9.8387... & \\
\hline (iii) & gradient; & allow slope & 1 \\
\hline \multirow[t]{3}{*}{(iv)} & height = area under the line; & seen explicitly or implied by working & 3 \\
\hline & use of \(1 / 2 \mathrm{X}\) base x height; evaluation; & allow alternative methods leading to correct answer for 3 marks & \\
\hline & ```
e.g.
height = area under the line;
(height =) 0.5 < 6.1 x 0.62
(height =) 1.9 (m)
``` & allow range of 1.88-1.92 & \\
\hline \multirow[t]{7}{*}{b} & any five from: & & 5 \\
\hline & MP1. weight / downward force (acts on the ball); & allow `gravity pulls it down' & \\
\hline & MP2. so it accelerates; & the velocity/speed increases & \\
\hline & MP3. there is drag (acting upwards); & air resistance / air & \\
\hline & MP4 drag increases with velocity/speed. & friction & \\
\hline & MP5. idea that eventually drag = weight; & allow 'forces are equal/balanced' & \\
\hline & \begin{tabular}{l}
MP6. (hence) resultant force is zero; \\
MP7. ball falls at a constant velocity/speed OR ball has zero acceleration;
\end{tabular} & allow 'reaches terminal velocity' & \\
\hline
\end{tabular}

Total for question \(7=13\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
\[
8 \quad \text { a }
\] \\
(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
correctly drawn thermistor symbol; e.g. \\
correct symbol for a voltmeter connected in parallel with any component; component is the lamp;
\end{tabular} & \begin{tabular}{l}
line through the symbol must be diagonal and 'ice hockey stick' shaped but can be in any orientation \\
DOP
\end{tabular} & 1

2 \\
\hline \begin{tabular}{l}
b (i) \\
(ii)
\end{tabular} & ```
voltage = current }\times\mathrm{ resistance;
dimensionally correct substitution;
rearrangement;
evaluation;
e.g.
5.6 = 0.79 × R
(R =) 5.6/0.79
(R =) 7.1 (\Omega)
``` & \begin{tabular}{l}
allow rearrangements and standard symbols e.g. \(V=I \times R\) \\
-1 for POT error (not converting mA to A ) \\
allow \(7(\Omega), 7.09(\Omega)\), \\
\(7.089(\Omega)\), \\
7.0886...( \(\Omega\) ) \\
\(7.08(\Omega)\) gets 2 marks only
\end{tabular} & \begin{tabular}{l}
\[
1
\] \\
3
\end{tabular} \\
\hline c & \begin{tabular}{l}
brightness increases; and any two from: \\
- (because) thermistor resistance decreases; \\
- (therefore) current increases; \\
- (therefore) voltage of lamp increases;
\end{tabular} & ignore references to power & 3 \\
\hline d & (current) decreases / eq; & condone idea of current halving & 1 \\
\hline
\end{tabular}

Total for question \(8=11\) marks
\begin{tabular}{|c|l|l|c|}
\hline \begin{tabular}{c} 
Question \\
number
\end{tabular} & \multicolumn{1}{|c|}{ Answer } & \multicolumn{1}{c|}{ Notes } & Marks \\
\hline 9 a & \begin{tabular}{l} 
D; this is the only correct pattern, arrows \\
in correct direction with repulsion shown \\
A-this is the pattern for N to S \\
B-this is the pattern for S to N \\
C-this is the pattern for S to S
\end{tabular} & 1 \\
\hline b (i) & straight AND parallel lines drawn; & \begin{tabular}{l} 
ignore lines drawn \\
outside region \\
enclosed by \\
magnets and \\
existing field lines \\
allow if \\
communicated in \\
writing if not clear \\
from drawing \\
arrows do not need \\
to be on all lines \\
but conflicting \\
arrows negates the \\
mark
\end{tabular} & 3 \\
(ii) & lines are evenly spaced; & \\
lines should be closer together / OWTTE; & \begin{tabular}{l} 
ignore any \\
described changes \\
to the apparatus \\
e.g. moving \\
magnets closer \\
together \\
ignore unqualified \\
'draw more lines'
\end{tabular} & 1 \\
\hline
\end{tabular}

Total for question \(9=5\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
10 (a) (i) \\
(ii) \\
(iii)
\end{tabular} & \begin{tabular}{l}
A-95; this is the number of protons \\
\(B\)-this is the number of neutrons \\
C-this is the atomic mass \\
D-this is the sum of atomic mass and the no of neutrons \\
B-146; this is the number of neutrons \\
A-this is the number of protons \\
C-this is the atomic mass \\
\(D\)-this is the sum of atomic mass and the no of neutrons \\
A - 95; there are as many electrons as protons \\
\(B\)-this is the number of neutrons \\
C-this is the atomic mass \\
\(D\)-this is the sum of atomic mass and the no of neutrons
\end{tabular} & & \begin{tabular}{l}
\[
1
\] \\
1 \\
1
\end{tabular} \\
\hline (b) & \begin{tabular}{l}
1 mark for each correct;;;
\(\square\)
\(\square\) 4 \\
95 \\
93 \\
2
\end{tabular} & & 3 \\
\hline (c) & number of neutrons does not change / eq; number of protons does not change / eq; & award both marks for 'nothing changes' / 'it stays the same' & 2 \\
\hline (d) & \begin{tabular}{l}
MP1. smoke absorbs alpha (particles); \\
MP2. \{less/no\} alpha particles reach the detector;
\end{tabular} & allow alpha cannot penetrate smoke allow not as many alpha particles are detected ignore 'count rate falls' as this is in the stem & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
(e) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
time (taken); \\
and EITHER of: \\
- for (radio)activity to halve; \\
- for half the (radioactive) nuclei / atoms / isotope to decay; \\
any three from: \\
MP1. beta would penetrate casing; \\
MP2. beta would not be absorbed by smoke; \\
MP3. \{source/smoke alarm\} would need replacing frequently; \\
MP4. idea that alarm would trigger due to naturally decreasing count rate;
\end{tabular} & \begin{tabular}{l}
allow how long it takes reject 'half the time' \\
allow count rate for activity ignore \\
- element \\
- substance reject: \\
- particles \\
- molecules \\
- 'break down' \\
- 'reactivity' \\
- a nucleus / an atom \\
- halve in mass \\
- to completely/fully decay \\
allow idea that beta could be hazardous to health allow beta can penetrate smoke allow the source would not last long
\end{tabular} & 2 \\
\hline
\end{tabular}

Total for question \(10=15\) marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
(a) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
PLEASE NOTE THE DIAGRAM IS THE SECOND MP \\
total internal reflection; \\
line drawn perpendicular to surface where ray meets it;
\end{tabular} & \begin{tabular}{l}
allow TIR \\
judge by eye line can be either solid or dashed this diagram shows out of tolerance
\end{tabular} & 1
1 \\
\hline \begin{tabular}{l}
(iii) \\
(iv)
\end{tabular} & \begin{tabular}{l}
\[
70\left(^{\circ}\right) \text {; }
\] \\
same angle as given in (a)(iii);
\end{tabular} & & \begin{tabular}{l}
\[
1
\] \\
1
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
line drawn passing through the surface; line bends away from the normal above the surface; \\
refraction;
\end{tabular} & arrow not required, normal not required & 2

1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline (c) (i) & \(\sin (\mathrm{c})=1 / \mathrm{n}\) & allow rearrangements & 1 \\
\hline \multirow[t]{2}{*}{(ii)} & substitution into correct equation; rearrangement and evaluation; final correct answer given to 3 s.f.; & mark independently & 3 \\
\hline & e.g.
\[
\begin{aligned}
& (\sin (c)=) \frac{1}{1.33} \\
& c=48.753 \ldots \\
& c=48.8\left(^{\circ}\right)
\end{aligned}
\] & allow 0.75187... if correct equation seen anywhere & \\
\hline \multirow[t]{2}{*}{(iii)} & \begin{tabular}{l}
MP1. relationship between angle of incidence and critical angle stated consistently with answer to (c)(ii); \\
e.g. i > c
\end{tabular} & & 2 \\
\hline & MP2. conclusion consistent with value of c found in (c)(ii); e.g. (if (c)(ii) < \(52^{\circ}\) then) reflection & (if (c)(ii) \(>52^{\circ}\) then) refraction & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline 12 a & oil / (natural) gas / petrol / diesel / uranium / plutonium; & ```
allow methane for
natural gas
ignore as
insufficiently
specific:
fossil fuel(s)
nuclear
``` & 1 \\
\hline b & \begin{tabular}{l}
any three from: \\
MP1. increase in \{(average) speed / kinetic energy\} of particles (due to higher temp); \\
MP2. particles collide with wall more often; \\
MP3. particles collide with wall with more force; \\
MP4. pressure is force on an area;
\end{tabular} & \begin{tabular}{l}
allow alternatives for particles e.g. molecules \\
allow 'hit harder' allow greater change of momentum award only if MP2 or MP3 seen allow symbol equation
\[
p=F / A
\]
\end{tabular} & 3 \\
\hline \begin{tabular}{l}
C (i) \\
(ii)
\end{tabular} & ```
pressure = force / area;
substitution;
rearrangement;
evaluation;
e.g.
1.45 x 106 = force / 0.0243
(force =) 1.45 \times 106 \times 0.0243
(force =) 3.52 }\times1\mp@subsup{0}{}{4}(\textrm{N}
``` & \begin{tabular}{l}
allow standard symbols and rearrangements e.g. \(p=F / A\) \\
-1 for POT error (e.g. incorrect conversion of MPa to Pa ) \\
allow 35235 (N) 0.035235 scores 2 marks
\end{tabular} & \[
1
\]
\[
3
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
d (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
thermal / sound; \\
efficiency equation seen or implied; measurement of useful energy output; measurement of total energy input; evaluation; \\
e.g. \\
efficiency = useful energy output total energy input \\
useful energy \(=9(\mathrm{~mm})\) or \(0.9(\mathrm{~cm})\) \\
input energy \(=62(\mathrm{~mm})\) or \(6.2(\mathrm{~cm})\) efficiency \(=0.15\)
\end{tabular} & \begin{tabular}{l}
condone heat \\
allow if seen anywhere allow if seen on diagram allow if seen on diagram \\
allow 8-10 (mm) allow 61-63 (mm) allow 0.14-0.15 allow if given as \% e.g. \(14 \%-15 \%\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 4
\end{aligned}
\] \\
\hline
\end{tabular}

Total for question \(12=13\) marks```

