edexcel

Mark Scheme (Results)
January 2013

International GCSE
Physics (4PH0) Paper 2P

Edexcel Level 1/Level 2 Certificate Physics (KPHO) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2013
Publications Code UG034772
All the material in this publication is copyright
© Pearson Education Ltd 2013

		$\begin{aligned} & \text { tion } \\ & \text { ber } \end{aligned}$	Answer			Accept	Reject	Marks
1	(a)							2
			$\begin{array}{\|l} \hline \text { Type of } \\ \text { radiation } \end{array}$	Charge	Source	++	-2	
			Alpha particle	(+) 2	Unstable nucleus	Unstable nuclei		
			Beta particle	- 1	Unstable nucleus			
			Gamma ray	0	Unstable nucleus			
			(As shown) 2 ; Unstable nucleu					

Question number			Answer	Accept	Reject	Marks
1	(b)		Any three of: MP1 - Idea that alpha particles would not penetrate (enough); e.g. alpha particles absorbed / stopped by \{aluminium / foil / a few cm air / paper / card\} MP2 - Idea that gamma rays would be too penetrative; e.g. gamma rays \{are not absorbed / are unaffected\} MP3 - Idea that some beta particles will pass through the foil; e.g. not all of the beta particles are absorbed MP4 - Idea of a correlation between thickness and absorption; e.g. thinner aluminium absorbs fewer beta particles	Ignore references to danger or harm All ideas may be expressed in terms of penetration or absorption. No need to see the word "aluminium," provided the meaning is clear. Accept paper or card will stop alpha for MP1 Accept comparisons of aluminium thickness for MP4		3
	(c)	(i) (ii)	$\begin{aligned} & 90 \\ & 39 \end{aligned}$ both 90 and 39 for mark B (the number of protons increases);			1 1
					Total	7

| Question
 number | Answer | Accept | Reject | Marks |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 2 | (a) | Any one of
 Reduced (running) costs;
 No atmospheric pollution / $\mathrm{CO}_{2} ;$
 Renewable (resource);
 The wind is free
 No costs | No polluting emissions
 No greenhouse gases
 Cleaner (only if
 qualified) | |

Question number		Answer	Accept	Reject	Marks
2	(b)	Up to two points about each of unreliability, environmental issues, site choice, maintenance difficulties, data use, or cost. 1 mark per point to a maximum 4 marks Unreliability - the wind does not always blow (at the right speed); the turbine does not always provide output OR a back-up generator is needed; Environmental effects - spoils the view OR is noisy; (construction) destroys habitats OR a hazard to flying birds; Site choice - a large site is needed; a windy site is needed; Maintenance difficulties need to work in remote location (usually); need to work in a hazardous location e.g at height / sea; Data use one turbine produces less power than a power station; need many/ 800 turbines to give same output as coal-fired; Cost building a wind farm needs much money / time; other costs for research / land / maintenance;	Accept - appropriate reverse arguments in terms of the suitability of coal-fired power stations Ignore comments about efficiency or cost effectiveness		4
				Total	5

Question number			Answer	Accept	Reject	Marks
3	(a)	(iii)	Any two of It is a straight line; Gradient / slope / correlation is positive; Line does / doesn't pass through origin; Idea of correlated variables, e.g. direct / indirect proportionality [depending on projection to the origin], length increases with number of bands;	Ecf from (a)(i)/(ii) Related statement e.g. curve, line forced through origin or mention of "anomaly"		2
	(b)		$3.2 \pm 0.1(\mathrm{~cm}) ; ;$ Sample working:	Allow evidence of two readings from scale for one mark, e.g. subtraction (22.3-9.1) or appropriate drawing on the photograph	Direct measurement of photograph with a ruler	2

Question Number		Answer	Accept	Reject	Marks
3	(c)	Responses may refer to measuring the length of either object (the chain or the single paperclip from photographs A and B) Any two of: Either object - parallel with scale; closer to scale; use fiducial mark e.g. a set square; take parallax into account; Minimise effect of friction on stretched chain; Remove paperclip from chain for measurement;	I gnore: repetition, measuring paperclip from zero Allow sensible equipment changes, e.g. more precise scale, using stiffer paperclips / links		2
				Total	12

Question number			Answer	Accept	Reject	Marks
5	(a)	(i) (ii)	Substitution; Calculation; $\begin{aligned} & \text { e.g. } \mathrm{m} \times \mathrm{g}=0.454 \times 10 \\ & =4.54(\mathrm{~N}) \end{aligned}$ Centre of gravity;	Centre of mass;		2
	(b)	(i) (ii)	force upwards; from top of nail; Any two from: increase F_{1} OR increase force (from hand); Increase d_{1} OR increase distance of hand from pivot; Keep F_{1} perpendicular to hammer;	Near vertical by eye In line with F_{2} use two hands use longer handle use longer hammer I gnore: references to d_{2} distance from nail to pivot idea of bigger [rather than longer] hammer		2 2
					Total	7

Question number			Answer	Accept	Reject	Marks
6	(a)	(i)	(Signal has) two values; Only; Any two of The idea of increased frequency (of wave or modulation); The idea of regeneration (allowing more data to arrive); The idea of using increased bandwidth; The idea of using additional (signal) level; The idea of multiplexing (e.g. use more than one channel);	On or off, 0 or 1, two signal strengths Binary send more bits/sparks, send morse code more quickly, send other letters The response should be about the signal, so ignore: idea of just sending a longer message using optical fibre(s)		2 2
	(b)	(i) (ii)	```(wave) speed = frequency }\times\mathrm{ wavelength Substitution; Calculation; e.g.: }820000\times36 = 300 120 000 or 300 000 000 or 3 x 108 (m/s)```	$v=\mathrm{f} \times \lambda$ (accept rearrangements) Bald answer; ; Power of ten error (for 1 mark) e.g. 300000 m / s Alternative correct units (for 2 marks) e.g. $300000 \mathrm{~km} / \mathrm{s}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$

Question number		Answer	Accept	Reject	Marks
6	(c)	183 (m);			1
	(d)	Any three of: MP1 Electrons move OR there is a current Or negative charge moves; MP2 (Discharge) to earth OR across cloud OR to named object - tree, house, lightning conductor; MP3 Air conducts; MP4 Phenomenon e.g. thunder clap / lightning;	Sparks generate radio waves; Lightning causes (radio) interference; Correct reference to electrostatic attraction / repulsion ;		3
				Total	11

Question number			Answer	Accept	Reject	Marks
7	(a)		B			1
	(b)	(i) (ii)	Word equation or $V_{p} I_{p}=V_{s} I_{s} ;$ Correct equation substituted OR rearranged; Answer; $\mathrm{Vp} / \mathrm{Vs}=\mathrm{Is} / \mathrm{Ip}$ or $\mathrm{Vs} / \mathrm{Vp}=\mathrm{Ip} / \mathrm{Is}$ e.g. $230 \times 0.25=12 \times \mathrm{I}_{\mathrm{s}}$, so $\mathrm{I}_{\mathrm{s}}=(230 \mathrm{x}$ $0.25) \div 12$ $=4.8(\mathrm{~A})$	$\begin{aligned} & \mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{p}} \text { or } \mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}} \\ & =\mathrm{I}_{\mathrm{p}} / I_{\mathrm{s}} \\ & \text { or } I_{1} V_{1}=I_{2} \mathrm{~V}_{2} \end{aligned}$ Bald answer; ; $4.79 \text { (A) , } 4.792 \text { (A) }$		1 2
	(c)		Two of MP1 Idea of energy / power lost; MP2 Idea of efficiency $\neq 100 \%$; MP3 Idea of less available energy/power/voltage/current; MP4 Idea of resistance increasing (with temperature);			2
					Total	6

Question number			Answer	Accept	Reject	Marks
8	(a)		Area under the graph (from 0 s to 3 s);	$6 \times 3 \text { or } 18(\mathrm{~m}) ;$ area shaded on graph		1
	(b)	(i) (ii)	$\text { Momentum }=\text { mass } \times \text { velocity; }$ Substitution in correct equation; Calculation; $\text { e.g. } 6.4 \times 6$ $=38.4$ $\mathrm{kg} \mathrm{m} / \mathrm{s}$;	$\mathrm{p}=\mathrm{m} \times \mathrm{v} \text {; }$ accept rearrangements Ns;		$\begin{aligned} & 1 \\ & 3 \end{aligned}$

Question number			Answer	Accept	Reject	Marks
8	(c)	(i)	4.8 (m/s) ;			1
		(ii)	Idea that momentum is conserved;	Allow e.c.f. from		3
			Substitution;	incorrect momentum		
			Calculatio	and /or incorrect		
			e.g.	velocity reading		
			$\begin{aligned} & p_{1}=p_{2} \quad\left(\quad m_{1} \times v_{1}=\left(m_{1}+m_{2}\right) \times v_{2}\right. \\ & 6.4 \times 6=\left(6.4+m_{2}\right) \times 4.8 \end{aligned}$	e.g.:		
				Idea of conservation of		
			$m_{2}=(38.4 \div 4.8)-6.4=8-6.4$	momentum;		
			$=1.6(\mathrm{~kg})$	$m_{2}=[(b)(i i) \div(c)(i)]-$		
				6.4 ; correct evaluation of		
				this;		
				e.g. $5 \mathrm{~m} / \mathrm{s} \rightarrow 1.28 \mathrm{~kg}$		
				Allow for one mark - A		
				calculation that only		
				leads to total mass		
				e.g. $=8 \mathrm{~kg}$;		
					Total	9

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034772 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

