edexcel

Mark Scheme (Results)
January 2014

International GCSE Physics (4PH0) Paper 2P

Edexcel Level 1/Level 2 Certificates Physics (KPHO) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

J anuary 2014
Publications Code UG037827
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	B (53)	Ignore I-131 is radioactive, it emits beta	1
(ii)	D (131)		1
(b)	Any two of -		2
	MP1 Beta is (moderately) ionising;		
	MP3 idea that I-131 has a short half-life;		
	MP4 idea that iodine is absorbed (easily) by the		
	thyroid;		
	MP5 (hence) reduces damage to healthy cells;		
	MP6 (hence) does not penetrate out of the body; MP7 (therefore) kills (only) tumour cells;		

Total 4 marks

Question number	Answer	Notes	Marks
3 (a) (i)	smoke particles in air (in smoke cell) OR pollen on water OR dust particles in air;	Accept correct description of Brownian motion applied to unspecified particles in a suitable medium	1
(ii)	Any two of - MP1 Idea that tiny/smaller particles are hitting; MP2 Larger (observed) particles are moved; MP3 Idea of random motion of larger particles;		2
		Allow zig-zag movement	
(b)	Any six ideas about arrangement and motion of particles Max 2 for each state	Accept same ideas shown in labelled diagrams	$\max 6$
	Solid -		
	Regular pattern OR close packed; Vibration in position;	Condone fixed position	
	Little space between particles;	Condone fixed position	
	Liquid -		
	Irregular pattern;		
	Able to move over/past other particles;	Condone no fixed position	
	Little space between particles;	I gnore vibration relating to liquid	
	Gas -		
	No pattern;		
	Able to move freely/fast; Larger space between particles;	Condone no fixed position I gnore vibration relating to gas	

Question number	Answer	Notes	Marks
4 (d) (i) (ii)	voltage $=$ current \times resistance; Substitution into correctly rearranged equation; Conversion between amps and milliamps; Calculation yielding value correct to at least 2 s.f.; e.g. $\begin{aligned} & I=5.9 \div 680 \\ & =0.00868(\mathrm{~A}) \\ & =8.7(\mathrm{~mA}) \end{aligned}$	Accept rearrangements and symbols e.g. current $=$ voltage \div resistance, $V=I R$, $\mathrm{R}=\mathrm{V} / \mathrm{I}$ Accept $\times 1000$ in calculation Allow 1 mark max if response is only a successful reverse argument leading to 5.8 V or 5.78 V	1 3

| Question
 number | Answer | Notes |
| :---: | :--- | :--- | :---: |
| 5 | any four from - | Marks
 MP1 momentum reduced;
 momentum |
| | MP2 by same amount;
 MP3 over longer time;
 MP4 so force reduced;
 MP5 use of "force = rate of change of
 momentum";
 MP6 less force means less damage/injuries; | ignore "momentum absorbed"
 ignore "impact reduced"
 simple mention of eqn is insufficient |

Question number		Answer	Notes	Marks
6 (a)	(i)	set-up showing any two fromclear indication of equipment needed; correct refraction at one surface of glass block shown; protractor shown in use;	ray-box or pins Allow ruler for apparent depth method	2
	(ii)	angle of incidence; angle of refraction;	Allow apparent depth method, i.e. real depth; apparent depth;	2
		OR critical angle; idea of grazing emergence;		
	(iii)	find $\sin i$ and $\sin r$; refractive index is the ratio of sines;	Accept for two marks - ($n=$) $\sin i / \sin r$ - $\quad(n=) 1 / \sin c$ - graph of $\sin i$ vs $\sin r$	2
		```OR find sin c; refractive index is l/ sin c;```	Allow refractive index $=$ real depth $\div$ apparent depth for two marks	
		Diagram -   reflection at first back surface; reflection at second back surface;	judge by eye   - straightness of ray and correctness of angle   - emergent ray parallel to incident ray	2
	(ii)	Refracted / slows down / wavelength decreases	Ignore: direction change ideas it does nothing / nothing happens	1



Question number	Answer	Notes	Marks
8 (a)   (b) (i)   (ii)	```weight of (the) plank moment = force x (perpendicular) distance (from pivot) substitution; final value; e.g. 1200 x 0.75 900 (Nm)```		1 1 2
(c)	principle of moments (stated or implied); correct calculation of distance from hand to pivot; calculation of total anticlockwise moment; final value;   e.g. $\begin{aligned} & (F \times 2.25)+(200 \times 0.75)=(1200 \times 0.75) \\ & F=330(N) \end{aligned}$	Allow ecf from (b)   $2.25(\mathrm{~m})$ seen in working $(F \times 2.25)+(200 \times 0.75)$   Allow 333 N	4

Total 8 marks

