edexcel ㅃ̈ㅊ

Mark Scheme (Results)

January 2015

International GCSE Physics (4PH0 2P)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG040637
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	C (132 000 V);		1
(b)	B (efficiency of transmission);		1
(c)	C (transformer);		1

Total 3 marks

Question number	Answer	Notes	Marks
2 (a)	Gravitational (force)	Allow (force of) gravity Gravitational pull Centripetal (force)	1
(b) (i)	All three labels correct;	C Comet P Planet S Sun	
(ii)	Any two of - MP1 Idea that orbits cross/meet/ intersect; MP2 Idea that comet and planet can be (at the same place) at the same time; MP3 Idea that orbit time periods are different;	Allow at the same place orbits overlap	

Question number	Answer	Notes	Marks
3 (a)	MP1 Due to friction;	Allow idea of materials rubbing Ignore "charge" "static" Reject (for MP2 mark) idea of protons moving	2
(b) (i)	Idea of spark / ignition / fire / explosion	Ignore reference to shock and petrol fumes	1
(ii)	Idea of current (in the wire); OR Idea of charge moving (in the wire); Idea that this discharges tanker; OR No voltage/ p.d. remains;	ignore references to positive charges	Allow: No charge is left No overall charge Charge is removed Tanker becomes neutral

Question number	Answer	Notes	Marks
4 (a) (i)	18.7 ± 0.5 (cm);	accept any value between 18.2 and 19.2	1
(ii)	Any two of - Ignore human MP1 Mention of parallax error; MP2 Idea of zero error; MP3 End of ruler is worn; MP4 Hook is curved; MP5 Hook stretches bands to different lengths; MP6 Bands are not close to ruler; MP7Bands are not parallel to ruler; MP8 Bands are twisted;	Ignore inaccurate scale	2
(b)	Idea of a controlled variable; e.g. force kept constant temperature kept constant	Ignore anomaly, no average, references to Hooke's law	

Question number	Answer	Notes	Marks
5 (a)	- $268.8\left({ }^{\circ} \mathrm{C}\right)$;	Minus sign is essential Allow $-269\left({ }^{\circ} \mathrm{C}\right)$ $-268.95\left({ }^{\circ} \mathrm{C}\right)$	1
(b) (i)	Any two of - MP1 idea that molecules move faster; MP2 idea that molecules become further apart; MP3 idea that molecules move more freely;	Must be comparative statements relating to boiling Allow increased KE increased vibration Allow (for "freely") idea that forces between molecules have been overcome Ignore ideas of bonding	2
(ii)(c)	Straight line with positive slope; Aimed at origin;	Allow line passing through origin, stopping short or dropping to θ axis at "4.2 K"	2
	Any four of - MP1 Appropriate instrument to measure temperature;	Points may be shown as labelled additions to the diagram	4
	MP2 Appropriate instrument to measure volume or length or tube diameter;	e.g. ruler	
	MP3 Means of varying temperature; MP4 consideration of diameter and volume;	e.g. water bath / heater	
	MP5 Idea of obtaining a range of values; MP6 Idea of repetition or averaging of readings; MP7 Draw a graph to display results; MP8 Mention of kelvin temperature;	Allow treatment of anomalies	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
6 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Work done \(=\) force \(\times\) distance moved; \\
Substitution into correct equation; \\
Calculation; \\
e.g. \(13 \times 110\) \\
1430 (J) \\
Same response as for 3(a)(ii)
\end{tabular} \& \begin{tabular}{l}
Allow \(\mathrm{W}=\mathrm{F} \times \mathrm{d}\) and rearrangements \\
Correct answer without working scores 2 marks \\
1430 (J) or ecf
\end{tabular} \& 1
2

1

\hline (b) \& | Any two of - |
| :--- |
| MP1 Idea that GPE depends on height OR |
| Statement that GPE $=\mathrm{mgh}$; |
| MP2 Idea that h is reduced; |
| MP3 Idea that centre of gravity (is now) lower; | \& Allow centre of mass for centre of gravity \& 2

\hline | (c) (i) |
| :--- |
| (ii) |\& ``

Moment = force x (perpendicular)
distance (from the pivot);
Calculate given moment;
Equate moments;
Calculation;
e.g.
(150 x 0.32) = 48 for
one mark
150\times0.32=F\times0.87 for
two marks
F (= 150 x 0.32 / 0.87) = 55 (N) for
three marks

``` & \begin{tabular}{l}
Allow moment \(=\mathrm{F}\) \\
\(x d\) and rearrangements \\
If no other mark gained, allow a statement that "clockwise moment = anticlockwise moment" for one mark
\[
55.172(\mathrm{~N})
\]
\end{tabular} & 1
3 \\
\hline
\end{tabular}

Total 10 marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii) \\
(iii)
\end{tabular} & \begin{tabular}{l}
90 \\
time; \\
either \\
for amount of (radioactive) isotope to halve; \\
or \\
for (radio)activity to halve; \\
Any two of - \\
MP1 Idea that (beta) radiation causes a stated hazard; \\
MP2 Idea that strontium-90 has a long half-life; \\
MP3 Idea that all beta emission will be absorbed by the body;
\end{tabular} & \begin{tabular}{l}
Allow for amount - \\
(number of undecayed) nuclei/atoms/molecules \\
(un-decayed) mass of isotope \\
e.g. causes cancer, kills cells, mutates DNA, ionises tissue \\
Accept lasts a long time \\
Accept answers in terms of range
\end{tabular} & 1
2


2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
Any two ideas from - \\
MP1 They are isotopes of different elements; \\
MP2 Strontium-90 (nucleus/atom) has the same number of protons as other strontium (nuclei/atoms); \\
MP3 Yttrium-90 (nucleus/atom) has the same number of protons as other yttrium (nuclei/atoms);
\end{tabular} & \begin{tabular}{l}
Must have both Minus is essential \\
Allow use of proton number data (38) \\
Allow use of proton number data (39)
\end{tabular} & 2

2 \\
\hline
\end{tabular}

Total 9 marks
\begin{tabular}{|c|c|c|c|}
\hline Question number & Answer & Notes & Marks \\
\hline \begin{tabular}{l}
8 (a) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
Any one of- \\
MP1 Speed / velocity (in a vacuum); \\
MP2 Transverse (wave); \\
MP3 Electromagnetic (wave); \\
MP4 A general wave property; \\
Any two of- \\
Frequency; \\
Wavelength; \\
Energy;
\end{tabular} & \begin{tabular}{l}
e.g. reflection, refraction, diffraction, transfer energy \\
Any wavelength or frequency relationship if stated must be correct
\end{tabular} & 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
There are more than two values; \\
Reference to shape/slope/ramp(s); \\
MP1 More than one gap measured / averaging seen; \\
MP2 Value of 1.15 or 1.35 (s);
\end{tabular} & \begin{tabular}{l}
Accept peaks not all same height not just 1 and 0 \\
Accept RA \\
Ignore "analogue" \\
Allow 2 marks for bald answers of: 1.15 or 1.35 (s) Allow 1 mark (MP1) for bald answers of: 1.2, 1.25, 1.4, 1.55 (s)
\end{tabular} & 2 \\
\hline (iii) & \begin{tabular}{l}
Calculation of frequency (from \(f=1 / T\) ); \\
Unit to match value;
\[
\text { e.g. } f=1 / 1.15=0.87
\]
\[
\mathrm{Hz}
\]
\end{tabular} & Allow e.c.f from time value given in (b)(ii)
\[
1 / 1.35=0.74
\] & 2 \\
\hline
\end{tabular}```

