P Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in Physics (4PH1)
Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019

Publications Code 4PH1_2P_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B - gravitational; A is incorrect because there are no charges C is incorrect because there are no magnetic fields D is incorrect because nuclear forces are short range	1	
(b)	D - universe; A is incorrect because the universe contains billions of galaxies B is incorrect because each solar system contains several planets C is incorrect because galaxies contain billions of stars	1	
(c)	A - absolute magnitude; B is incorrect because colour determines the surface temperature of a star C is incorrect because diameter determines the power of a star D is incorrect because temperature determines the power of a star	1	

Question number	Answer		Notes	Marks
2 (a) (i)	Points plotted to within half a small square;		Points should lie on a very good curved line.	1
	Number of turns on primary coil	Output voltage in V		
	10	39.6		
	20	19.7		
	40	9.9		
	60	6.6		
	80	5.0		
	100	4.0		
	 Best fit line is smooth curve;			
(iii)	As number of (primary) tu	ns increases, (secondary)	Allow RA	2
	At a decreasing rate/is non	-linear;	Allow unqualified 'inversely proportional' for 2 marks. Ignore: 'negative exponential'	

b) (i)	$\left(N_{p} / N_{s}\right)=\left(V_{p} / V_{s}\right) ;$	Allow any correct rearrangment. Allow "i(nput) and o(utput)" or " 1 and 2"for "p(rimary) and s(econdary)". Allow correct word equation. Ignore ' P ' for ' N ' Condone 'T', 't' or ' n ' for ' N ' Condone 'coils' for 'turns'	1
(ii)	Substitution of values for N_{p}, V_{P} and V_{s}; Evaluation of N_{s}; e.g. $40 / N_{s}=(6.8 / 9.9)=0.686 \ldots$; $N_{s}=40 / 0.601 . .=58(.2 \ldots .$.	Allow any row of data from table or coordinates for a point on the line on the graph Accept answer in range 57-60. Accept non-integer number of turns.	2

Question number	Answer	Notes	Marks
3 (a)	Any FIVE from:	A fully labelled diagram can score	
	MP1. measure time for a set distance;	allow measuring wavelength for a known frequency	
	MP2. realistic values suggested for experiment to work;	e.g. - at least 1 m for microphones and oscilloscope method - at least 100 m for seeing and hearing a clap method - at least 50 m for wall and echo method - wavelength measured at least 10 cm	
	MP3. suitable measuring instrument named;	e.g. stop clock, stopwatch, ruler, tape measure, oscilloscope, trundle wheel, timer	
	MP4. further detail of setup;	e.g. - two microphones on bench connected to oscilloscope - start timing when see a clap and stop when hear it - clap by wall and time how long for clap to come back - moving a microphone until waveforms line up on oscilloscope - For echo method, idea time and distance is "there and back"	
	MP5. idea of repeats AND average; MP6. speed = distance / time;	allow speed $=$ frequency \times wavelength for appropriate method	

(b)	Measurement of one period on oscilloscope;		3
	Use of x-scale;		
	Evaluation of period in s;	Allow 1 SF answer	
	```e.g. Period = 4 squares Period = 4 x 0.25(ms) Period=1.0 x 10-3(s)```	Condone period $=0.0005$ (s) or 0.002 (s) or in standard form for 2 marks MAX.	
	Substitution into given equation $f=1 / T$;	Allow ECF from b) (i)	2
	Evaluation;		
	$\begin{aligned} & \text { i.e } f=1 /\left(1.0 \times 10^{-3}\right) \\ & f=1000(H z) \end{aligned}$		


Question number	Answer	Notes	Marks
4 (a)	A helium nucleus /   2 protons and 2 neutrons/   4 nucleons, 2 protons;	Ignore chemical symbol	1
(b) (i)   (ii)   (iii)	Arrow labelled Y , through X away from nucleus;   Line of action of force would pass through centre of nucleus by eye;   Arrow labelled Z, opposite direction to their answer from b) (i) by eye;   Same size as their answer from b) (i) by eye;   MP1 Force on alpha is repulsive;   MP2 Alpha and nucleus must be same (type of) charge;   MP3 Alpha is positive therefore nucleus is positive;	If no arrow Y , condone correct direction for arrow $Z$, i.e. force arrow pointing away from point $X$.   Allow like charges repel' for MP1 and MP2	$2$   2   3
4 (c)	Selection of $\mathrm{F}=\mathrm{ma}$;   Substitution or re-arrangement;   Evaluation;   e.g. $a=3.6 / 6.6 \times 10^{-27}=5.5 \times 10^{26} \mathrm{~m} / \mathrm{s}^{2}$	Can be implied from working   -1 for PoT error   Allow $5.45 \times 10^{26}$,   $5.454 \times 10^{26}, 5.4545$...   $\times 10^{26}$ etc   Condone $5.4 \times 10^{26}$	3


Question   number	Answer	Notes	Marks
5 (a)	An arrow drawn from left to right by eye;	1	
(b)	Comparative statements for side containing A:   Wavefronts closer together/EQ;   (therefore) wavelength smaller;   Same speed;   $(v=$ fx $\lambda$ so) frequency larger;	Allow RA for B   Allow e.g."waves more   compressed together"	4



(b)	Any THREE from   MP1 Dog and water are at different temperatures;   MP2 Dog and water in physical contact so likely to be conduction;   MP3 No movement of particles from dog to water, so not convection / EQ;   MP4 Dog and bag are both solids, so convection impossible;   MP5 Not much radiation as dog and water similar temperatures;	Allow "no gap between dog and bag so no convection"	3


Question number	Answer	Notes	Marks
7 (a)	Cosmic Microwave Background Radiation (CMBR)   (Cosmological) Red shift of galaxies	Allow one missing word   Accept reference to Hubble's Law.   Allow higher level idea of ratio of hydrogen to helium as alternative to either marking point.	2
(b)	CMBR   MAX TWO from   MP1 CMBR appears to be the same in all directions/is everywhere;   MP2 Which implies all parts of the Universe were in contact a long time ago;   MP3 Wavelength has increased as the universe has expanded;   MP4 universe was (significantly) hotter long ago;   Red Shift of Galaxies   MAX TWO from   MP5 The further the galaxy is from Earth, the greater the red-shift;   MP6 The greater the red-shift, the faster the galaxy is moving away;   MP7 Speed of galaxies increases (is directly proportional to) with increased distance;   MP8 Relationship between speed and distance implies expansion from a single point or since the Big Bang;	Allow implication of idea of coming from single point   Allow frequency has decreased   Allow RA   Condone "star" for "galaxy" for MP5   Allow 'red shift' for 'speed of galaxies'   Allow 'galaxies moving apart from each other' for 'relationship between speed and distance'	4


Question number	Answer	Notes	Marks
8 (a)	Centre of gravity;	Accept 'Centre of Mass'	1
(b) $\begin{aligned} & \text { (i) } \\ & \text { (ii) }\end{aligned}$	Moment $=$ force $\times($ perpendicular $)$ distance;   Any correct moment; i.e. $2.1 \times 0.28$ or $W \times 0.032$   Evidence of use of principle of moments; i.e. $2.1 \times 28=W \times 3.2$   Re-arrangement ; i.e. $W=2.1 \times 28 / 3.2$   Evaluation; W = 18 ( N )	Condone $M=f x d$   Allow calculation performed in cm	1
			4
		Accept unrounded 18.375, 18.4 N.	
		Condone for 1 mark statement of principle of moments.	


Question   number	Answer   (a) (i)	Selection of P=F/A;   Conversion of g to kg;   Evaluation of weight;   Evaluation of pressure;	Notes

