Pearson Edexcel

Mark Scheme (final)

Summer 2019

Pearson Edexcel International GCSE in Physics (4PH1) Paper 2PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019

Publications Code 4PH1_2PR_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i) (ii) (iii)	(crude) oil / coal / (natural) gas; B - (furnace and boiler); A is incorrect because this transfers energy betwe C is incorrect because this transfers energy electri D is incorrect because this transfers energy from a C - (generator); A is incorrect because this transfers energy betwe B is incorrect because this transfers energy from a store D is incorrect because this transfers energy from a	allow petrol / diesel / gasoline / kerosene thermal stores lly from a kinetic store hermal to a kinetic store thermal stores hemical to a thermal hermal to a kinetic store	1 1 1
(b)	any two advantages max. from: MP1.solar is renewable; MP2. no fuel / transportation cost; MP3. no air pollution / greenhouse gases; any two disadvantages max. from: MP4. idea that Sun does not shine all the time; MP5. idea that output depends on geographical location; MP6. need for large open spaces;	allow "sunlight is free"/eq allow named pollutant e.g. CO_{2} etc. ignore comments relating to setup cost ignore "relies on the weather" allow "takes up farm land"/eq	4

Total for Question 1 = 7 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 (a) \& longitudinal; \& \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
particles arranged randomly; \\
particles further apart in gas than in liquid; \\
(sound travels by) vibrations; \\
idea that \{vibrations / sound / waves / energy\} are passed on more effectively because particles are closer together;
\end{tabular} \& \begin{tabular}{l}
allow either mark if clear \\
from diagrams \\
allow irregularly for randomly mark can be given for description of liquid, gas, or both \\
allow RA \\
ignore diagram for this mark if gaps in liquid bigger than one particle \\
allow alternatives for vibrations e.g. oscillations allow "sound vibrates particles" \\
allow equivalents for effectively e.g. faster, easily, efficiently etc.
\end{tabular} \& 2

2

\hline
\end{tabular}

(c) (i)	(wave) speed = frequency \times wavelength;	allow correct use of symbols and rearrangements e.g. $v=f \times \lambda$ condone s as symbol for speed	1
(ii)	substitution OR rearrangement; evaluation;		2
	e.g. $\begin{aligned} & 340=1400 \times \lambda \quad \text { OR } \quad \lambda=v / f \\ & (\lambda=) 0.24(\mathrm{~m}) \end{aligned}$	allow $0.243,0.242857 . .$. etc. condone 0.242	
(iii)	any five from:	allow use of frequency instead of pitch throughout	5
	MP1.sound heard by student A is louder; MP2. sound heard by student A is constant pitch;	allow RA	
	MP3. no change in sound heard by student A when speed of rotation is varied; MP4.sound heard by student B varies in pitch; MP5. sound heard by student B is high pitch when buzzer is moving towards them AND low pitch when moving away from them;		
	MP6.change of pitch for student B is greater when speed of rotation is greater; MP7.sound varies in loudness for student B;	allow RA i.e. constant loudness for student A	

Total for Question 2 = 13 marks

Question number	Answer	Notes	Marks
4	a description including any six from:		6
	MP1. nebula collapses / forms protostar;	allow 'contracts'	
	MP2. temperature / brightness of nebula / protostar increases;		
	MP3. (when temperature becomes hot enough) fusion starts and star becomes main sequence;		
	MP4. brightness / temperature of main sequence star depends on its mass;	allow 'size' for mass	
	MP5. (when hydrogen runs out) main sequence star becomes red giant;		
	MP6. red giants are brighter (than main sequence);		
	MP7. red giants (surfaces) are cooler (than most main sequence stars);		
	MP8. red giant becomes white dwarf;		
	MP9. white dwarfs are less bright (than red giant / main sequence stars);		
	MP10. white dwarfs are hotter (than red giant / most main sequence stars);		

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	```290 (s); substitution into P = E/t; evaluation; a matching unit for power; e.g. (P = 39000/290 (P =) 130 watts / W```	allow ecf from (a)(i) a correct unit for power may score 1 if no other mark scored allow 134.48... allow J / s answers of 0.13 kW , $0.13 \mathrm{~kJ} / \mathrm{s}$ gain 3 marks answers of 0.13 W , $0.13 \mathrm{~J} / \mathrm{s}$ gain 2 marks	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
(b)	```correct evaluation of temperature change; substitution into }\Delta\textrm{Q}=\textrm{m}\times\textrm{c}\times\Delta0\mathrm{ ; rearrangement; evaluation; e.g. temperature change =49(}\mp@subsup{}{}{\circ}\textrm{C} 39000=0.45 \times c < 49 (c =) 39 000 / (0.45 < 49) (c=) 1800 (//kg }\mp@subsup{}{}{\circ}\textrm{C}```	allow 49 seen anywhere in working allow ecf from incorrect temperature change value of 50,69 or 70 only -1 for POT error allow 1770, 1769, 1768.7... answer of 1.7687... gains 3 marks answer of 1733, 1256, 1238 gains 3 marks answer of 1.256..., 1.733..., 1.238... gains 2 marks	4

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 6 (a) \& step-down (transformer); \& \& 1 \\
\hline (b) \(\begin{array}{ll}\text { (i) } \\ \& \\ \& \text { (ii) }\end{array}\) \& \begin{tabular}{l}
idea of taking repeats (and removing anomalies); \\
only two columns or rows with headings of 'number of turns' and '(output) voltage'; \\
correct units included only in voltage heading; \\
all data correctly included in body of table to same precision as given in the paper; \\
idea of increasing sensitivity of voltmeter e.g. 'using a voltmeter that measures to more decimal places';
\end{tabular} \& \begin{tabular}{l}
allow repeating the investigation or individual readings \\
columns can be in either order allow use of standard symbols e.g. n/N for number of turns and V for voltage allow volts or V reject if units given with data values ignore any units given for number of turns
\end{tabular} \& 1
3
3

1

\hline \multirow[t]{4}{*}{(c) $\begin{aligned} & \text { (i) } \\ & \\ & \\ & \text { (ii) } \\ & \\ & \\ & \\ & \text { (iii) }\end{aligned}$} \& 500 turns reading circled; \& \& 1

\hline \& straight line passing through all points except reading at 500 turns; \& allow straight line with points evenly distributed either side \& 1

\hline \& simple pattern statement e.g. 'as the number of turns increases, the output voltage increases'; further detail e.g. linear relationship; \& \& 2

\hline \& \& allow "they are proportional" for both marks only if line passes through origin \&

\hline
\end{tabular}

(d)	pair of readings correctly read from the graph / results table; substitution into correct transformer formula; rearrangement; evaluation; e.g. number of turns $=600$, output voltage $=7.5 \mathrm{~V}$ $V_{1} / 7.5=1200 / 600$ $\left(V_{1}=\right)(1200 \times 7.5) / 600$ $\left(\mathrm{V}_{1}=\right) 15(\mathrm{~V})$	allow if s in calcula symbols allow ran (V)	nywhere either in mbers 15-16	4

Total for Question $6=14$ marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
\begin{array}{lll}
\hline 7 \& \text { (a) } \& \text { (i) }
\end{array}
\] \\
(ii)
\end{tabular} \& \begin{tabular}{l}
momentum = mass \(\times\) velocity; \\
substitution; \\
evaluation; \\
e.g.
\[
\begin{aligned}
\& (p=) 0.170 \times 5.2 \\
\& (p=) 0.88(\mathrm{kgm} / \mathrm{s})
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
allow rearrangements and standard symbols e.g. \(m=p / v\) reject \(m\) for momentum \\
-1 if POT error \\
allow 0.884 (kgm/s)
\end{tabular} \& 1

2

\hline | (b) (i) |
| :--- |
| (ii) | \& | momentum of black ball calculated; conservation of momentum used correctly; |
| :--- |
| final momentum of white ball calculated; evaluation of final velocity of white ball; |
| e.g. $\begin{aligned} & p_{\text {black }}=0.80(\mathrm{kgm} / \mathrm{s}) \\ & 0.88=p_{\text {white }}+0.80 \\ & p_{\text {white }}=0.08(\mathrm{kgm} / \mathrm{s}) \\ & \mathrm{v}_{\text {white }}=0.47(\mathrm{~m} / \mathrm{s}) \end{aligned}$ |
| 80 (N); |
| (to the) left; | \& | ignore units stated or implied from calculation allow ecf from (a) ignore units |
| :--- |
| allow $800(\mathrm{gm} / \mathrm{s})$ |
| allow $80(\mathrm{gm} / \mathrm{s})$ allow 0.5, 0.4705... 0.49 for use of 0.884 from a(ii) | \& 4

\hline
\end{tabular}

Question number	Answer	Notes	Marks
(ii) (iii) (iv)	work (done) $=$ force \times distance (moved in direction of force); substitution; evaluation; e.g. $\begin{aligned} & (W=) 4.2 \times 0.145 \\ & (W=) 0.61(J) \end{aligned}$ same answer as (ii); kinetic energy (store) of molecules increases; (temperature increases) because temperature is proportional to (mean) KE (of molecules);	accept correct symbols and rearrangements e.g. $W=F \times s$ allow d for distance -1 for POT error allow 0.609 (J) 609 (J) gains 1 mark allow molecules move faster / eq	1 2 1 2
(b)	any one from: MP1. idea that (more) energy would be transferred / lost to the surroundings (for slow compressions); MP2. piston would have less KE (to transfer); MP3. less force on piston (so less work done on gas);	allow less work done on air	1

