edexcel "

Mark Scheme (Results)
June 2014

Pearson Edexcel International GCSE Physics (4PH0) Paper 2P

Pearson Edexcel Level 1/Level 2
Certificate Physics (KPHO) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG039706
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

-All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
-Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
-All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question
 number | Answer | Notes |
| :--- | :--- | :--- | :--- |

(b)	Ice - Vibrate (about fixed positions); Water - Change position/ move over each other; Steam - EITHER Random movement; OR Range of speeds;	Ignore ideas of - collisions - filling container - bonds - freedom - flowing Accept - oscillate - shake - jiggle Accept for change of position - move slowly - move around Allow slide past each other Accept quickly for range of speeds	3

Question number	Answer	Notes	Marks
2 (a)	Any ONE simple effect, e.g. attract scraps of paper / deflect water stream / deflect (gold leaf) electroscope/use a coulombmeter	Ignore theoretical approaches e.g. use a charged "object" Allow any practical suggestion e.g. attracts hair/balloon	1
(b)	(charges) are transferred / lost; electrons;	Allow move or jump Allow - "negative electrons" - e- reject for 1 mark "positive electrons"	2
(c)	MP1. Charge rods (of different plastics); MP2. Method to allow to swing freely (suspend / watch glasses); MP3. Observation of attraction and repulsion;	Points may be shown on a labelled diagram Methods that would not distinguish charge (e.g. picking up paper scraps, bending a water stream) can score ONLY MP1 Allow rubbing with the cloth as charging by friction Accept alternative method e.g. induction Allow method describing deflections of a charged gold leaf electroscope (GLE) for up to 3 marks MP1 (GLE) Charge rods; MP2 (GLE) Use of (charged) GLE; MP3 (GLE) Looking for rise and fall of leaves;	3

(Total for Question $2=6$ marks)

Question number	Answer	Notes	Marks
3 (a)	Vector quantities Force, velocity Scalar quantities Distance, speed	Four correct ticks = 2 marks minus 1 each mistake /omission two ticks in a row is a mistake	2
(b) (i) (ii)	```Momentum = mass x velocity; Substitution into correct equation; Calculation; e.g. 1500 x 20 30000 (kg m/s)```	Allow equivalent rearrangement or symbols $\mathrm{p}=\mathrm{m} \times \mathrm{v}$ Allow 3×10^{4} Full marks for correct answer without working (bald answer)	1 2

Question number	Answer	Notes	Marks
$3 \text { (c) (i) }$ (ii)	Substitution into correct equation; Calculation; e.g. $\frac{22500}{0.14}$ 160000 (N) Any three of - MP1. Longer time (of impact); MP2. Same momentum change (with or without a seatbelt); MP3. Reduces force; MP4. Passenger stays on seat / is not thrown from vehicle/eq;	No mark for the equation as it is given on page 2 Accept 2 or more sf, e.g. 161000,160714 Full marks for bald correct answer Do not credit the equation as it is given on page 2 Allow slows down more gradually	2

Question number	Answer	Notes	Marks
4 (a)	(All) the alpha particles would go (straight) through (the foil);	Reject idea that not all alpha particles will go through so do not accept e.g. some, most, nearly all	1
(b) (i) (ii)	Idea that result(s) does not fit/match/concur with the pattern/trend; Either (check and) repeat the measurement/experiment ; OR Work out why the anomalous result(s) occurred;	Ignore - 'unexpected' or 'different' unless correctly qualified - references to alpha particle scattering Allow idea related to a graph, e.g. results far away from the line of best fit Accept outlier Accept idea of discarding/excluding from average or graph formulate a new theory	1
(c)	(there is a large) repulsion; OR like charges repel; Idea that charge is concentrated (at the centre of the atom);	Ignore deflection as it is the stem on page 8 Allow idea of a region of high charge density	2

$\begin{array}{|c|l|l|l|}\hline \text { (d) } & \begin{array}{l}\text { Any TWO reasonable ideas e.g. } \\ \text { to make (new) discoveries; } \\ \text { to check/validate (existing) theories; } \\ \text { to disprove (existing) hypotheses/theories; } \\ \text { to confirm (other scientists') findings; } \\ \text { to test (new) hypotheses; } \\ \text { to develop (better) understanding; } \\ \text { to improve (students) skills; } \\ \text { to gather (new) evidence; }\end{array} & \text { Allow to give (practical) demonstrations; } \\ & \text { Allow prove for validate }\end{array}$ accept similar appropriate ideas $\}$
(Total for Question $4=7$ marks)

| Question
 number | Answer | Notes | Marks |
| :---: | ---: | :--- | :--- | ---: |
| 5 (a) (i) | A-amplitude; | | 1 |
| (b) (i) | (i)
 B- frequency;
 e.g.
 Light, (any named) electromagnetic wave, water
 waves, S(econdary) seismic waves; | Allow
 (slinky if described correctly
 wave on a string
 Ignore 'heat waves' | |

b	Any two of - MP1. Idea that value relates to all the data collected; MP2. Idea that method allows for anomalies; MP3. Idea that effects of uncertainty/error can be reduced or accounted for;	Method checks reliability, anomalies can be seen graph is an averaging technique
Ignore comments about accuracy		

Question Number	Answer	Notes	Marks
7 (a) (i) (ii)	input power = output power; OR $\mathrm{I}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}=\mathrm{I}_{\mathrm{s}} \mathrm{~V}_{\mathrm{s}} ;$ OR $\mathrm{I}_{\text {in }} \mathrm{V}_{\text {in }}=\mathrm{I}_{\text {out }} \mathrm{V}_{\text {out }} ;$ Substitution in correctly rearranged equation; Calculation; e.g. $I_{\mathrm{s}}=\frac{(2 \times 230)}{110}$ 4 (A)	A dimensionally correct power equation is required. Accept - Power in = Power out $\mathrm{I}_{1} \mathrm{~V}_{1}=\mathrm{I}_{2} \mathrm{~V}_{2}$ input power = output power $V_{\mathrm{P}} I_{\mathrm{P}}=V_{\mathrm{S}} I_{\mathrm{S}}$ Full marks for bald correct answer Accept more s.f. e.g. 4.2, 4.18, 4.1818	1
(b) (i)	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{P}} / \mathrm{V}_{\mathrm{S}}\right)=\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right) ; \\ & \frac{\text { input (primary) voltage }}{\text { output (secondary) voltage }}=\frac{\text { primary turns }}{\text { secondary turns }} \\ & \frac{V_{P}}{V_{S}}=\frac{n_{P}}{n_{S}} \end{aligned}$	Allow - equation in words with turns ratio shown as a fraction - standard abbreviations :- s, p, in, out, 1, 2 - N, n or T for number of turns - "number of coils" for number of turns Rearrangements also to include turns ratio as a fraction $\left(V_{S} / V_{P}\right)=\left(N_{S} / N_{P}\right) \quad$ [equation inverted] $V_{S}=\left(V_{P}\right)\left(N_{S} / N_{P}\right) \quad\left[V_{S}\right.$ as subject $]$ $\mathrm{V}_{\mathrm{P}}=\left(\mathrm{V}_{\mathrm{S}}\right)\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right) \quad\left[\mathrm{V}_{\mathrm{P}}\right.$ as subject $]$	1

(ii)	Substitution into correctly rearranged equation; Calculation; e.g. $N_{S}=\frac{(110 \times 1200)}{230}$ 570	Accept - 2 or more s.f. e.g. 574, 573.9 - Answers which round to 570	2
7 (c)	Any 5 from MP1. it steps up or steps down the voltage; MP2. current in (primary) coil produces magnetic field; MP3. the current is changing /has frequency of 50 Hz; MP4. causing a (changing) magnetic field in the core; MP5. the core strengthens the magnetic field; MP6. field lines interact with (secondary) coil; MP7. which induces a voltage in the secondary coils; MP8. transformer won't work with (steady) d.c.	allow flux for magnetic field Allow increases or decreases voltage Allow concentrates for strengthens Allow flux changes in secondary coil Allow induces a current/eq	5

| Question
 number | Answer | Notes |
| :--- | :--- | :--- | :--- |
| 8 | Any FOUR suitable points where ever seen
 Location, e.g.
 MP1. Latitude / Sun angle;
 MP2. suitability of site - e.g. enough area for solar
 array;
 MP3. geological factor - e.g. accessible source of
 heat / hot water;
 MP4. proximity of population/cities;
 Climate, e.g.
 MP5. Effect of seasons;
 MP6. hours of sunlight;
 MP7. intensity of sunlight;
 MP8. geothermal power station unaffected by
 climate; | e.g. build solar on the equator
 e.ghadow from hills/trees |

