

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE in Physics (4PH0) Paper 2PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

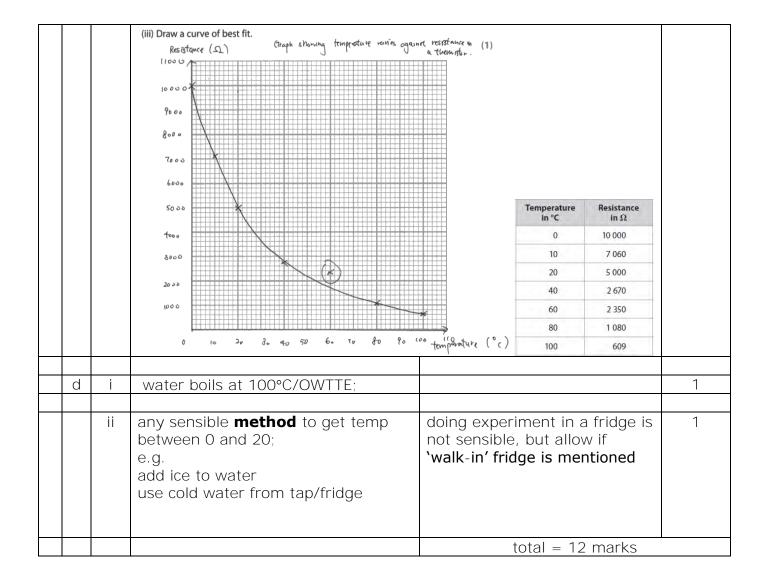
Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UG042367 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


Question number			Answer	Notes	Marks
1	а		B;		1
			E;		1
	b	İ	p = m.v	in words or accepted symbols do not accept 'M' for momentum	1
		ii	substitution; evaluation; e.g. 900 x 15 14 000 unit = kg m/s OR N s;	13 500 Independent Allow kg ms ⁻¹	3
		111	$KE = \frac{1}{2} m.v^2;$	in words or accepted symbols allow speed for velocity	1
		iv	substitution; evaluation; e.g. 0.5 x 900 x 15 ² 100 000(J)	101 250 Allow 101 000	2
				total = 9 mar	^ks

Question number	Ansv	wer		Notes	Marks
2 a	Type of radiation	Deflected upwards	Deflected downwards	Not deflected	4
	alpha	(√)			
	beta		\checkmark		
	gamma			\checkmark	
	neutrons			\checkmark	
	protons	\checkmark			
		each corr	ect ;;;;		
b i	 any sensible sugges phrased); e.g. alpha has a sma alpha would not alpha would be c alpha would colli <pre>{particles/molecc</pre> alpha would ionis <pre>particles/molecu</pre>	Il range in air hit the gold leaf deflected ide with the air cules/RA} se the {air/	alpha	es interact with	1
ii	any TWO results fr MP1. most went (s		NB:	tructure of atom or	2
	 MP2. (the paths of deflected at an a angle; MP3. (the paths of deflected throu angle / backsc 	acute/small) very few were gh an obtuse	allow bent allow for obtuse large >90° for backscatte		
C	MP 2, 4 can be she diagram any FOUR explanati from:		Ignore ALL comment	d off the gold foil s about electrons P 3, 5 a causal ed	4
	 MP1. Small nucleus MP2. mostly empty MP3. because not r because most α through; 	y space; many α deflected ,	/		
	MP4. Positive OR h MP5. which causes positive (or low	deflection of	allow protons are in repulsion, rec idea that α sa nucleus		

_	Question number		Answer	Notes	Marks
3	а	i	moment = force x (perpendicular) distance (from pivot)	in words or accepted symbols	1
		ii	$\begin{array}{llllllllllllllllllllllllllllllllllll$	in words or in numbers allow working in cm or m	3
	b		MP1. Increases (force on newtonmeter);	may be shown by a calculation	3
			MP2. (because) weight of bar has a moment;		
			MP3. in same direction (clockwise) as 2 N weight;	allow $F_N = 62(N)$ for three marks	
				total = 7 marks	

	Question number		Answer	Notes	Marks
4	а		one of: iron is (soft) magnetic; iron loses its magnetism easily;	allow RA for steel	1
	b		these can be shown on a labelled diagram	allow	3
			MP1. current carrying (insulated) wire; MP2. wrapped into coil;	wire shown connected to a battery solenoid = MP2 only	
			MP3. wrapped on iron core;		
	С		Any two ideas from:	do not give marks for • 'the door closes'/eq • electricity • power allow	2
			MP1. current/ voltage reduces OR eq;	current stops circuit broken	
			MP2. magnetic field of em reduces;	 iron plate no longer magnetised 	
			MP3. (magnetic) force holding the iron plate to the magnet no longer present;		
				total = 6 marks	5

	Question number		Answer	Notes	Marks
5	а				1
	b	i	Any two ideas from: MP1. it acts as water bath; MP2. gives more gradual heating or cooling OR gives (easier/better) control of temperature;	allow water distributes temperature (more) evenly /RA for air very high temperature	2
			MP3. protects the thermistor against direct heating/prevents intense heating;		
		ii	B; in parallel across the thermistor in series with the thermistor		1
	С	i	ignore orientation of the graph suitable scales marked on both axes (both axes labelled with quantity and u points within ± ½ small square; ;		4
		ii iii	anomalous point at 60, 2350; LOBF; should go through 60, 1750 approx no obvious abrupt changes of gradient		1

Question number			Answer	Notes	Marks
6	а	i	number of waves/cycles = 3.5 ;	3.5 seen or implied	2
			$\frac{0.60}{3.5} = 0.17 \text{ (m)};$	0.1714 (m) 17 cm 17.14 cm	
				For 1 mark only 17 (m), 17.14(m), 0.2 (m), 0.15 (m), 0.085 (m)	
		ii	wave speed = frequency x wavelength	allow words or accepted symbols and rearrangements	1
		111	substitution; rearrangement; evaluation; eg. $3.0x10^8 = 0.17 \text{ x f}$ (1 mark) $3.0x10^8 / 0.17$ (2 marks)	allow ecf from ai	3
			1.8 x 10 ⁹ (Hz) (3 marks)	1.76 x 10 ⁹ (Hz) 1.75 x 10 ⁹ (Hz)	
	b	i	diffraction;	POT = -1	1
		ii			2
		11	 any two from: MP1. microwaves not diffracted as much; MP2. diffraction (only seen) when size of barrier/gap comparable to wavelength; 	must have quantifier-e.g 'little' ignore 'microwaves not diffracted'	2
			MP3. radio-waves have (much) longer wavelength than microwaves/RA;	wavelength of microwaves (much) smaller than size of barrier allow an implied comparison	
				total =9 marks	
				101al = 9 111dl KS	

Question number	Answer	Notes	Marks	
7	6 marks from with a MAX of 2 from any one area	allow other sensible points	6	
	 benefits of nuclear fuel MP1. no CO₂ emitted / no smoke emitted; MP2. does not contribute to global warming; MP3. reliable/not weather dependant; MP4. small volume of waste; MP5. concentrated energy source/ not much transport costs to bring fuel; MP6. power stations are relatively small; 	no green-house effect		
	 disadvantages of nuclear fuel MP7. difficult to dispose of waste; MP8. accidents can spread radiation widely / risk of radiation leak; MP9. nuclear fuel is toxic / harmful / radioactive / difficult to handle / long half-life; MP10. decommissioning costs are very high; MP11. increased security risk/ terrorist attack; 	Allow waste		
	 benefits of biomass MP12. abundant sources / uses waste products from farms /houses/renewable; MP13. uses materials which would produce CO₂ anyway, so no net emission; MP14. can be used to create different products (e.g. manure) as well as energy; MP15. reduces landfill; MP16. (source is) relatively cheap; 			
	 disadvantages of biomass MP17. relatively inefficient; MP18. can increase methane in atmosphere/can increase green-house gases; MP19. may require more land; MP20. high transport costs to collect raw material; MP21. can be smelly; MP22. often seasonal power source /variable output source; MP23. can be storage costs for biogas; 	causes acid rain		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom