Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Physics (4PHO) Paper 2PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer					Notes	Marks
1	Name of ${ }^{\text {a }}$ (\quad Type of power station						4
		fossil fuel	hydroelectric	nuclear	wind turbine		
	Dinorwis		\checkmark				
	Drax	\checkmark					
	Fulabrok				\checkmark		
	Torness			\checkmark			
	1 mark for each correct row ; ; ;					More than 1 tick (\checkmark) in a row negates that row	

Total for question $=4$ marks

Question number	Answer	Notes	Marks
2 (a)	gravitational (potential energy);	allow GPE ignore gravity ignore thermal/heat potential energy	1
(b) (i) (ii)	friction; electrons; positive; all the hairs have the same (negative) charge; (same charges) repel;	must be in this order condone positive charge allow 'like’ for 'same'	3 2
(c)	any 3 of: MP1. metal / post conducts/eq; MP2. charge is earthed/charge flows to ground; MP3. discharging hair/ eq; MP4. hair falls down due to its weight;	allow electrons for charge allow metal provides low resistance path allow (all) charge leaves hair / girl hair/ girl becomes neutral condone ‘pulled down by (effect of) gravity'	3

Total for question $=12$ marks

Question number	Answer	Notes	Marks
4 (a) (i) (ii)	boiling; MP1. idea that particles move apart; MP2. idea that particles gain (kinetic) energy; MP3. idea that particles move (more) freely;	allow evaporation ignore references to vibration allow molecules for particles allow spread out / take up more space may be shown on labelled diagram allow idea of moving faster ignore 'move more' allow 'bonds break' / 'break away' / ‘escape surface' / 'overcome attraction' ignore unqualified 'move more' / 'move randomly'	$\begin{aligned} & 1 \\ & 3 \end{aligned}$
(b) (i) (ii)	straight line with same positive gradient throughout; line passes through the origin (if extended);	no mark for formula as seen on QP page 2 rearrangement and substitution in either order $\begin{aligned} & \mathrm{p}_{1} \times \mathrm{T}_{2}=\mathrm{p}_{2} \times \mathrm{T}_{1} \\ & \mathrm{p}_{1}=\frac{\mathrm{p}_{2} \times \mathrm{T}_{1}}{\mathrm{~T}_{2}} \end{aligned}$ allow 129, 128.6 etc correct answers without working gain 3 marks truncated answers e.g. 128 gains 2 marks only 230 gains 1 mark mark independently judge by eye	3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (a) \& \begin{tabular}{l}
A (\(20 \mathrm{~Hz}-20,000 \mathrm{~Hz}\)); \\
The only correct answer is A \\
B is not correct because \(25,00 \mathrm{~Hz}\) is too high for humans to hear \\
C is not correct because humans can hear below 200 Hz \\
D is not correct because \(25,00 \mathrm{~Hz}\) is too high for humans to hear and humans can hear below 200 Hz
\end{tabular} \& \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
calculation of time period; \\
use of \(f=1 / T\); \\
evaluation; \\
e.g. \\
(time period \(/ \mathrm{T})=0.010(\mathrm{~s})\)
\[
\begin{aligned}
\& (\mathrm{f}=) 1 / 0.010 \\
\& (\mathrm{f}=) 100(\mathrm{~Hz})
\end{aligned}
\] \\
line drawn has similar amplitude to existing line; \\
line drawn has a smaller frequency;
\end{tabular} \& \begin{tabular}{l}
allow ecf for incorrect T \\
allow 0.01 seen anywhere \\
200 (Hz), 33(.3) (Hz) for 2 marks
\end{tabular} \& 3

2

\hline
\end{tabular}

Total for question $=6$ marks

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	any sensible suggestion; e.g. newtonmeter / balance / scale(s) weight $=$ mass \times gravitational field strength; substitution OR rearrangement; evaluation; e.g. $50=m \times 10$ ($\mathrm{m}=$) $5(\mathrm{~kg})$	accept (electronic) scale condone newtonmetre ignore weighing machine allow in standard symbols or in words e.g. $W=m \times g$ allow a 'mixture' e.g. weight $=$ mass $\times \mathrm{g}$ reject 'gravity' for g allow use of $\mathrm{g}=9.81$ N/kg $5.1(\mathrm{~kg})$ from $\mathrm{g}=9.81$ accept correct answer with no working for both marks	1 1 1 2
(b)	MP1. use of density = mass/volume; MP2. measure volume (of cannonball); MP3. further volume measurement detail; e.g. volume of cannonball= volume of water displaced OR measure diameter AND calculate volume of sphere	allow 'find out' for measure allow radius for diameter $v=4 / 3 \pi r^{3}$ for volume	3
(c)	any 3 of: MP1. Momentum $=$ mass \times velocity; MP2. momentum before (firing) is zero; MP3. momentum is conserved; MP4. idea that after firing cannon must have equal and opposite momentum to cannonball;	ignore references to Newton's laws $p=m \times v$ momentum before $=$ momentum after $0=m_{1} \times v_{1}-m_{2} \times v_{2}$ (v taken in the direction of the arrows on the diagram)	3

Total for question $=10$ marks
www.igexams.com

Question number	Answer	Notes	Marks
7 (a)	digital: only set values allowed; analogue: any value allowed / continuously variable;	allow in diagrams or words ignore references to quality, regeneration, range, information density allow idea of binary, on-off, OR 1-0 for digital signal	2
(b)	MP1. use of correct distance OR doubling time(at end of calculation); MP2. conversion from mm to m ; MP3. substitution OR rearrangement; MP4. evaluation; e.g. (distance $=$) $4.2(\mathrm{~mm})$ (distance $=$) $0.0042(\mathrm{~m})$ $2.8 \times 10^{8}=\frac{0.0042}{\text { time }}$ (time $=$) 1.5×10^{-11} (seconds)	seen anywhere $4.2 \times 10^{-3}(\mathrm{~m})$ time $=\frac{4.2 \times 10^{-3}}{2.8 \times 10^{8}}$ $1.5 \times 10^{-11}(\mathrm{~s})$ gets 4 marks 7.5×10^{-12} gets 3 allow POT error as unit conversion error for -1 e.g. 1.5×10^{-9} (s) gets 3 marks 7.5×10^{-11} gets 2	4

(C)	any 4 of: MP1. current (in coil / wire) is alternating / changing direction / varying; MP2. the coil / wire has a (changing) magnetic field; MP3. magnetic field of (permanent) magnet and of coil interact; MP4. producing a force (which changes direction) on the coil; MP5. causing loudspeaker cone to vibrate; MP6. vibrations transferred to air;	ignore references to RH rule or LH rule allow mention of a.c. ignore 'coil/ wire is electromagnet' condone 'fields overlapping' ignore 'cutting field' allow 'coil is attracted/repelled by permanent magnet' allow paper tube for loudspeaker cone	4

Total for question $=10$ marks

