www.papacambridge.com UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Joint Examination for the School Certification and General Certificate of Education Ordinary Level

CHEMISTRY

PAPER 1 Multiple Choice

OCTOBER/NOVEMBER SESSION 2002

1 hour

5070/1

Additional materials: Multiple Choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended)

TIME 1 hour

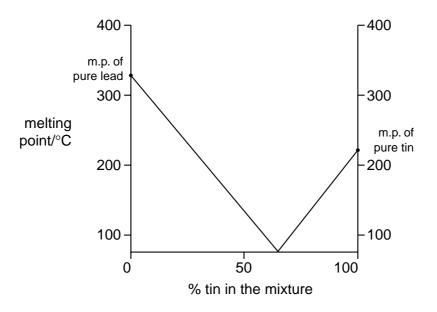
INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your name, Centre number and candidate number on the answer sheet in the spaces provided unless this has already been done for you.

There are forty questions in this paper. Answer all questions. For each question, there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate answer sheet.

Read very carefully the instructions on the answer sheet.


INFORMATION FOR CANDIDATES

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

- www.papaCambridge.com Which property of a gas affects the rate at which it spreads throughout a laboratory 1
 - Α boiling point
 - В molecular mass
 - С reactivity
 - D solubility in water
- 2 The graph gives the melting points of mixtures of lead and tin.

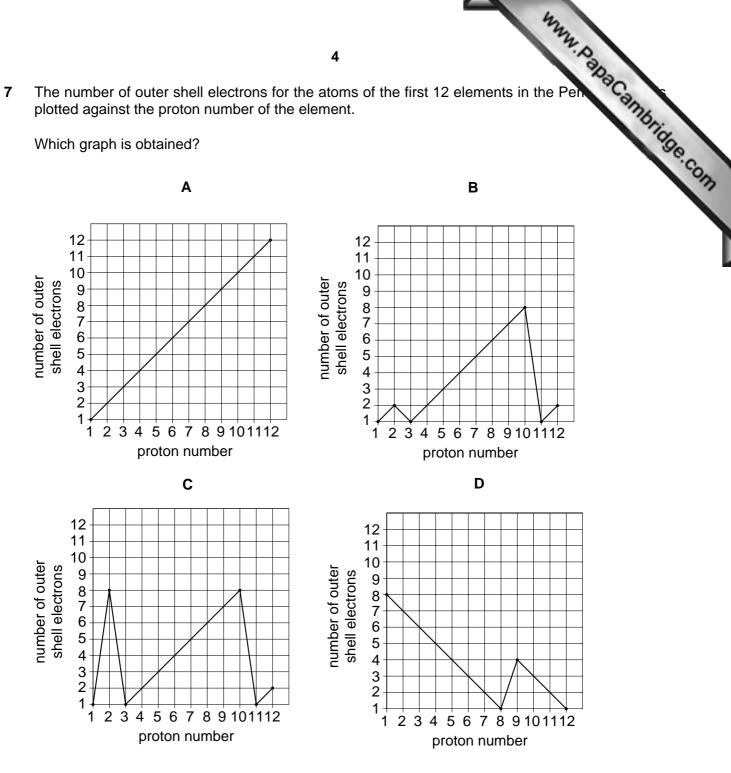
The graph shows that any mixture of lead and tin must have a melting point

- Α above that of tin.
- В below that of lead.
- С below that of both tin and lead.
- D between that of tin and lead.
- 3 From which mixture can the underlined substance be obtained by adding water, stirring and filtering?
 - calcium carbonate and sodium chloride Α
 - В copper(II) sulphate and sodium chloride
 - С ethanoic acid and ethanol
 - D iron and magnesium

www.papaCambridge.com An aqueous solution of a sulphate is made from a solid hydroxide, of a metal M, by 4

 $M(OH)_2$ (s) + $H_2SO_4(aq) \longrightarrow MSO_4(aq) + 2H_2O(I)$

For which hydroxide would the method not work?


- Α barium hydroxide
- В copper(II) hydroxide
- С iron(II) hydroxide
- D magnesium hydroxide
- 5 Which ion has the most shells that contain electrons?
 - Al³⁺ Α
 - Be²⁺ В
 - С N^{3–}
 - S^{2–} D
- 6 The table gives data about four substances.

Which substance could be an ionic compound?

compound	melting point / °C	electrical conductivity in aqueous solution
Α	-73	good
В	32	poor
С	474	poor
D	805	good

7 The number of outer shell electrons for the atoms of the first 12 elements in the Penn plotted against the proton number of the element.

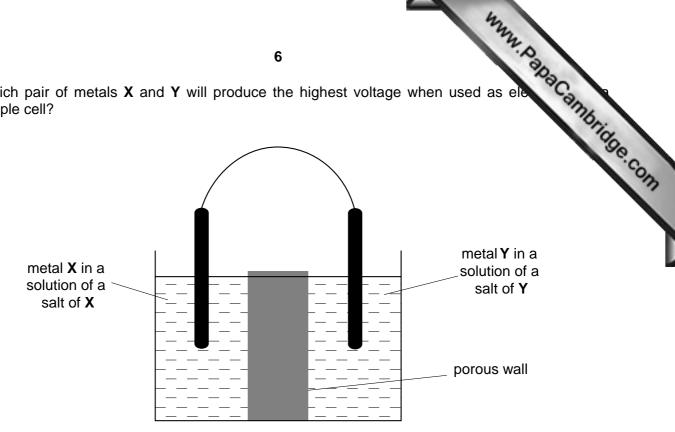
Which graph is obtained?

8 The table shows the electron structures of four elements.

element	electronic structure
W	2, 6
x	2, 8
Y	2, 8, 1
Z	2, 8, 7

Which pair of atoms will form a covalent substance?

- A two atoms of W
- B two atoms of X
- $\boldsymbol{C} \quad \text{ an atom of } \boldsymbol{W} \text{ and an atom of } \boldsymbol{X}$
- $\boldsymbol{D} \quad \text{an atom of } \boldsymbol{Y} \text{ and an atom of } \boldsymbol{Z}$
- 9 Which substance contains covalent bonds, but also conducts electricity?
 - A brass
 - B graphite
 - C iodine
 - D steel
- **10** One mole of each of the following compounds is burnt in excess oxygen.

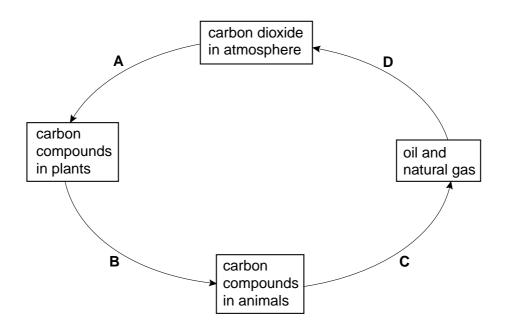

Which compound will produce three moles of carbon dioxide and three moles of steam only?

- **A** C_3H_8 **B** C_3H_7OH **C** $C_3H_7CO_2H$ **D** $CH_3CO_2CH_3$
- 11 When zinc reacts with dilute sulphuric acid a gas is released.

What happens to the zinc and what is the gas released?

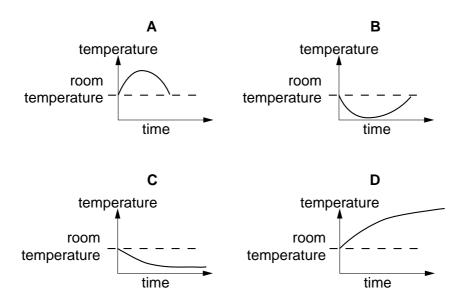
	the zinc is	the gas is
Α	oxidised	hydrogen
В	oxidised	sulphur dioxide
С	reduced	hydrogen
D	reduced	sulphur dioxide

12 Which pair of metals X and Y will produce the highest voltage when used as ele simple cell?

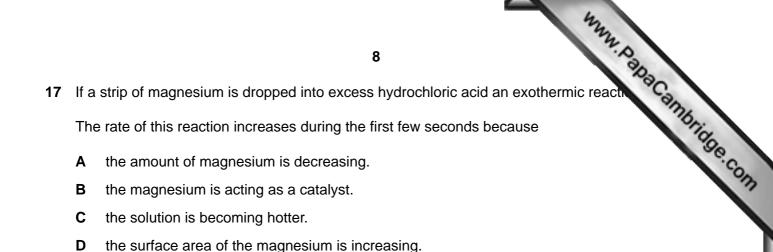

	metal X	metal Y
Α	copper	silver
В	magnesium	silver
С	magnesium	zinc
D	zinc	copper

13 Four electrolytes were electrolysed using carbon electrodes.

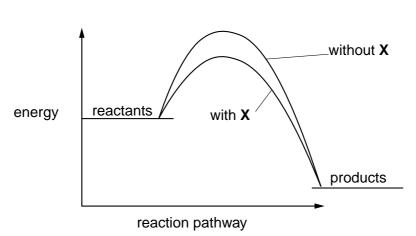
Which set of data is correct?


	alactrolyta	produ	uct at
	electrolyte	anode	cathode
Α	CuSO ₄ (aq)	oxygen	copper
В	NaCl (aq)	chlorine	sodium
С	NaH (I)	sodium	hydrogen
D	PbBr ₂ (I)	lead	bromine

- 14 Which pair of substances are isotopes?
 - **A** ${}^{12}_{6}$ C and ${}^{14}_{6}$ C
 - B carbon dioxide and carbon monoxide
 - **C** diamond and graphite
 - **D** C_2H_4 and C_3H_6
- 15 Which step in the diagram shows the process of photosynthesis?


16 Dissolving ammonium nitrate in water is endothermic.

Which graph shows how the temperature alters as the ammonium nitrate is added to water and then the solution is left to stand?



7

www.papacambridge.com

18 The energy profile diagrams show how adding a substance **X** to a reaction mixture changes the reaction pathway.

Which change is likely to be observed when X is added to the reaction mixture?

- A The reaction becomes less exothermic.
- **B** The reaction becomes more exothermic.
- **C** The speed of the reaction decreases.
- **D** The speed of the reaction increases.
- 19 Which process does not involve either oxidation or reduction?
 - A formation of ammonium sulphate from ammonia and sulphuric acid
 - B formation of nitrogen monoxide from ammonia
 - **C** formation of sulphuric acid from sulphur
 - **D** formation of zinc from zinc blende (ZnS)

20 In separate experiments, an excess of aqueous sodium hydroxide or aqueous a gradually added to a solution X.

www.papacambridge.com In both experiments, a precipitate was obtained which dissolved in an excess of the a reagent.

What could X contain?

- Α copper(II) nitrate
- В iron(II) nitrate
- С iron(III) nitrate
- D zinc nitrate
- 21 An excess of dilute sulphuric acid reacts with both aqueous barium hydroxide and aqueous barium chloride. In what way are the two reactions the same?
 - Α A gas is produced.
 - В An insoluble salt is produced.
 - С The final pH is 7.
 - D Water is produced.
- 22 Which property decides the order of the elements in the Periodic Table?
 - Α the masses of their atoms
 - the number of electrons in the outer shell В
 - С the number of neutrons in the nucleus
 - D the number of protons in the nucleus
- 23 The proton number of indium, In, is 49.

What is the most likely formula for the oxide of indium?

Α	In ₂ O	В	In ₂ O ₃	С	InO	D	InO ₂
---	-------------------	---	--------------------------------	---	-----	---	------------------

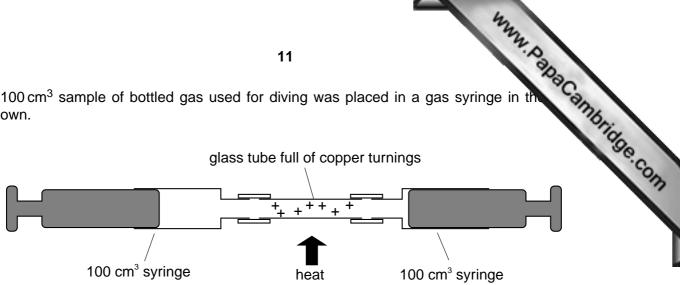
24 Which element in the table is likely to be a transition metal?

element	melting point	colour of chloride
Α	high	blue
В	low	green
С	high	white
D	low	white

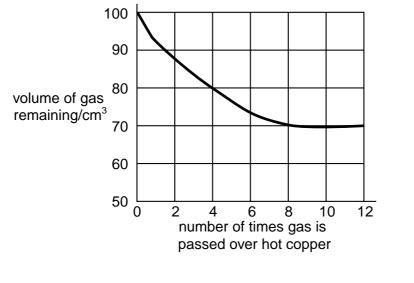
- www.papacambridge.com 25 Which feature of a metal's structure is responsible for it conducting electricity?
 - Α It contains positive ions.
 - В It has a "sea of electrons".
 - С Its ions are tightly packed together.
 - Its positive ions attract electrons. D
- **26** Aluminium is extracted from purified bauxite by electrolysis but iron is extracted from haematite by reduction with coke.

Why is iron not extracted by electrolysis?

- Α Haematite needs to be purified but bauxite does not.
- В Iron is less reactive than aluminium.
- С Reduction with coke is cheaper than electrolysis.
- D Reduction with coke gives a purer product than electrolysis.
- 27 Old steel drums corrode quickly in a damp atmosphere but aluminium cans do not.


Which of the following correct statements explains this behaviour of aluminium?

- Α Aluminium has only one valency.
- В Aluminium has a lower density than iron.
- С Aluminium is above iron in the activity series.
- D Aluminium is protected by its oxide layer.
- **28** Caesium is a metal that is more reactive than aluminium.


Which reaction would produce caesium?

- Α electrolysing aqueous caesium chloride
- В electrolysing molten caesium chloride
- С heating caesium carbonate
- D heating caesium oxide with carbon
- 29 Which of the following gases cannot be removed from the exhaust gases of a petrol powered car by its catalytic converter?
 - carbon dioxide Α
 - В carbon monoxide
 - С hydrocarbons
 - D nitrogen dioxide

30 A 100 cm³ sample of bottled gas used for diving was placed in a gas syringe in the shown. glass tube full of copper turnings

The gas was passed backward and forward over heated copper turnings. The results obtained were used to plot the graph.

What is the percentage of oxygen in the bottled gas?

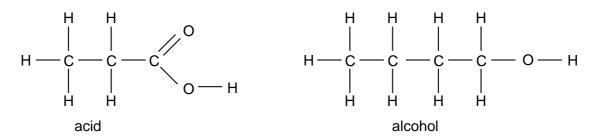
Α	20%	В	30%	С	70%	D	80%
---	-----	---	-----	---	-----	---	-----

31 In the Haber process, nitrogen and hydrogen react to form ammonia.

 $N_2(g) + 3H_2(g) \implies 2 NH_3(g) \Delta H = -92 kJ/mol$

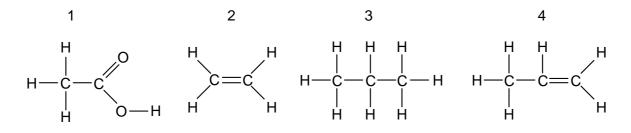
Which factor increases both the speed of reaction and the amount of ammonia produced?

- Α addition of a catalyst
- В decreasing the temperature
- С increasing the pressure
- D increasing the temperature


11

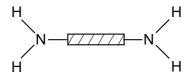
32 Nitrates from fertilisers used on farmland can cause pollution.

Why do nitrates pollute rivers?

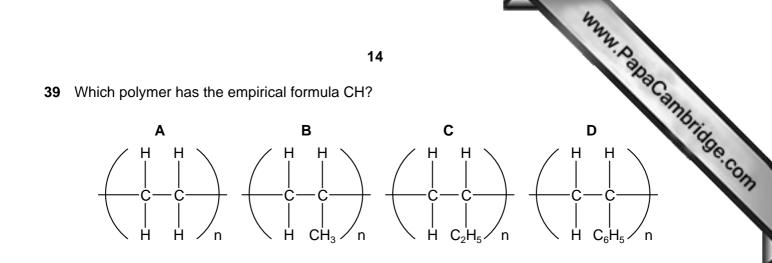

- A Nitrates are salts.
- B Nitrates are very soluble in water.
- C Nitrates contain oxygen.
- D Nitrate ions are negatively charged.
- 33 Which representation of dilute sulphuric acid is correct?
 - **A** $H_2(aq) + SO_4^{2-}(aq)$
 - **B** 2H⁺(aq) + SO₄²⁻ (aq)
 - **C** $2H^+(aq) + SO_4^-(aq)$
 - $\mathbf{D} = H_2 SO_4(I)$
- 34 Which statement describes what happens when hydrogen and oxygen are used in a fuel cell?
 - A Electricity is generated directly.
 - B Electricity is used to produce water.
 - **C** Hydrogen is burned to form steam.
 - **D** Hydrogen reacts to form a hydrocarbon fuel.
- 35 The structures of an acid and an alcohol are shown.

Which pairing of names correctly identify the two compounds?

	acid	alcohol
Α	ethanoic	butanol
В	ethanoic	propanol
С	propanoic	propanol
D	propanoic	butanol


- www.papacambridge.com 36 Which physical property of the alkanes does not increase as relative molecular mass
 - Α boiling point
 - В flammability
 - С melting point
 - D viscosity
- The structures of four organic compounds are shown. 37

Which compounds decolourise bromine water?


- 1, 2 and 4 С Α 1 and 2 В 2 and 4 D 3 and 4
- A polymer X was hydrolysed and the two products were 38

and

What can be deduced about X?

- Α It was a condensation polymer.
- В It was starch.
- С It was made by addition polymerisation.
- D It was Terylene.

- 40 In the polymerisation of ethene to form poly(ethene), there is no change in
 - A boiling point.
 - B density.
 - C mass.
 - D molecular formula.

BLANK PAGE

						=	I he Periodic	_	Group	Elemen	S							
-	=											=	2	>	7	١N	0	
							Hydrogen										4 Helium 2	
7 Lithium 23 Sodium	9 Beryllium 4 Magnesium 12	[]						_				11 Boron 5 27 Aluminium 13	6 Carbon 6 Salicon 14 Silicon	14 7 Nitrogen 31 Phosphorus 15	16 Oxygen 8 32 Sulphur 16	19 Fluorine 9 35.5 Chlorine 17	20 Neon 10 Argon 18	
38 Stassium Saesium Caesium Caesium Caesium Caesium Caesium Caesium	40 20 Calcium 20 Strontium 38 Strontium 58 Barium 56 Barium	A5 Scandium 21 39 7139 139 139 139 139 57 57 57 57 57 57 57 57 57 57 57 57 57	48 1 1 1 22 91 40 21 1 78 40 1 78 40 7 7 7 7 7 7 7 7 7 7 7 7 7	51 Vanadum 23 88 Nicbium 41 181 181 73	52 Chromium 24 Molybdenum 42 184 72 74 74	55 Manganese 25 T echnetium 43 186 8 Rhenium 75	56 Fe Iron 28 Ruthenium 44 190 Osmium 76	59 Coatt 27 Coatt 103 45 Rhodium Rhodium 45 I 192 I 192 192 177	Palladium Palladium Nickel S9 Nickel A6 195 Palladium Palladium 78 Palladium 78	64 Cu Cu 29 Ag Silver 197 197 79 Copper 20 Au	es Zinc 30 2inc 43 48 Mercury 80 80	70 Gallium 31 115 115 115 115 114 149 204 204 81 171 11	73 Germanium 32 50 Tin 50 Tin 82 82 tin 82 82 tin 82 6 82 82 50 50 50 7 6 82 6 82 83 83 7 83 83 83 83 83 83 83 83 83 83 83 83 83	75 Arsenic 33 122 33 Antimony 51 209 51 81 81 81 81 81	79 Selenium 34 128 Tellurium 52 Polonium 84	Br Bromine 35 127 127 127 53 cdine 53 Astatine 85	8 36 Krypton 54 Xenon 38 8 Xenon 86 88 86 Radon 86 86	16
3-71 La 0-103 y	3-71 Lanthanoid series 0-103 Actinoid series 0-103 Actinoid series a = relative atox = atomic symb = proton (ato	89 1 oid series d series d series a = relative atomic mass X = atomic symbol b = proton (atomic) number	mass	140 58 Certum 58 Thortum 90 The VC	Praseodymium 59 Protactinium 91	140141144144150152157159162162165CePrNdProductionSamationEuGdTbDyPointHohriumCetiumPerseodyniumRecodyniumPromethiumSamatiumEuropiumGadolinumTbDyPyHohriumCetiumPerseodyniumNeodyniumPromethiumSamatiumEuropiumCadolinumEuCdTbDyHohriumCalibritumPaseodyniumPointRepolinumCutiumEuropiumCadolinumCadolinumEr66FS66FSThoriumPaseUNpPuAmeticiumCutiumBerteliumCafiforniumEinsteliumEinsteliumThoriumProtactinium23939495969697986661 <td>Promethium 61 Neptunium 93 of any gas</td> <td>samarium Samarium 62 Plutonium 94 S is 24 dm</td> <td>Eu Eu Europium Americium B at room</td> <td>157 Gddolinium 64 Cm curium 96 rempera</td> <td>159 Tb Tb Tb Berkelium 97 ature and</td> <td>Pysprosium B C C C C C C C C C C C C C</td> <td>Holmium Holmium 67 ES 89 (r.t.p.).</td> <td>167 Estilum 100 Fermium</td> <td>169 Thulium Mendelevium 101</td> <td>Topologium 173 Topologium 100</td> <td>175 Luteium 71 Lawr 71</td> <td>173 175 173 175 174 YB Vienbium Vienbium Vienbium Luueium Ad NO Ad NO Jalevium Lg 102 10 102 10</td>	Promethium 61 Neptunium 93 of any gas	samarium Samarium 62 Plutonium 94 S is 24 dm	Eu Eu Europium Americium B at room	157 Gddolinium 64 Cm curium 96 rempera	159 Tb Tb Tb Berkelium 97 ature and	Pysprosium B C C C C C C C C C C C C C	Holmium Holmium 67 ES 89 (r.t.p.).	167 Estilum 100 Fermium	169 Thulium Mendelevium 101	Topologium 173 Topologium 100	175 Luteium 71 Lawr 71	173 175 173 175 174 YB Vienbium Vienbium Vienbium Luueium Ad NO Ad NO Jalevium Lg 102 10 102 10
														D	×	con		

The Periodic Table of the Elements DATA SHEET