CAMBRIDGE INTERNATIONAL EXAMINATIONS

Joint Examination for the School Certificate and General Certificate of Education Ordinary Level
CHEMISTRY

PAPER 4 Alternative to Practical
 OCTOBER/NOVEMBER SESSION 2002

Candidates answer on the question paper.
Additional materials:
Mathematical tables and/or calculator

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.
Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.
You should use names, not symbols, when describing all reacting chemicals and the products formed. Mathematical tables are available.
FOR EXAMINER'S USE

1 A student found the composition of air using the apparatus shown below.

Syringe A contained $90 \mathrm{~cm}^{3}$ of air. The air was forced over heated copper into syringe B. The air was then forced back into syringe \mathbf{A}.

The process was repeated several times until the volume of gas forced back into syringe \mathbf{A} was constant.

The diagram below shows the volume of gas in syringe \mathbf{A} after the experiment had finished.

(a) (i) Name the main gas remaining in syringe \mathbf{A}.
\qquad
(ii) What is the volume of gas remaining in syringe \mathbf{A} ?
\qquad
(iii) Calculate the percentage of this gas in the original sample of air.
\qquad
(iv) During the experiment copper formed a compound.

Give the name, formula and colour of this compound.
name \qquad
formula \qquad
colour \qquad
(b) The tube containing the copper compound was removed from the syringes. The compound was heated and dry hydrogen gas was passed over it.

(i) Name the two products of the reaction between hydrogen and the copper compound.
\qquad
(ii) What is the function of hydrogen in this reaction?
\qquad
(iii) Give a test and result to confirm the presence of hydrogen. test \qquad
result \qquad

2 Silver iodide may be made by the reaction between aqueous potassium iodide and a silver nitrate.

A student added $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ potassium iodide to $30 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ silver nitrate.

$$
\mathrm{KI}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{AgI}(\mathrm{~s})
$$

(a) (i) Describe what was seen during the reaction.
\qquad
(ii) How could the silver iodide be removed from the mixture?
\qquad
(b) (i) Which of the reagents potassium iodide or silver nitrate was in excess? Explain your answer.
answer \qquad explanation \qquad
\qquad
\qquad
(ii) Calculate the mass of silver iodide formed ($\left.A_{\mathrm{r}}: \mathrm{Ag}, 108 ; \mathrm{I}, 127.\right)$
(c) The student did another experiment to make silver chloride by adding $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ potassium chloride to $30 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ silver nitrate,
(i) Describe the appearance of the silver chloride on forming, \qquad on standing for a few minutes. \qquad
\qquad
(ii) Was the mass of silver chloride more than, the same or less than the mass of silver iodide in (b)(ii)? Explain your answer. (A_{r} : Ag, 108; $\mathrm{Cl}, 35.5$.)
answer
explanation \qquad
\qquad
\square
(b) The production of carbon dioxide in a solution was indicated by effervescence. \square
(c) A solution of carbon dioxide in water turned red litmus blue.
(d) Carbon dioxide turned lime water milky. \square

4 A student placed each of three metals in tubes containing dilute hydrochloric acid.

In which tubes was hydrogen produced?
(a) X and Y only, \square
(b) X and Z only,
(c) Y and Z only,
(d) X and Y and Z .

5 A student prepared ethene from a hydrocarbon oil using the apparatus shown below.

The reaction is an example of
(a) cracking, \square
(b) oxidation, \square
(c) polymerisation,
(d) saturation. \square

6 An ester has the structural formula shown below.

It can be prepared by the reaction between:
(a) methanol and methanoic acid.
(b) methanol and ethanoic acid.
\square
(c) ethanol and methanoic acid. \square
(d) ethanol and ethanoic acid. \square

He added the sample to a previously weighed container which he re-weighed.

| Mass of container and \mathbf{F} | $=10.44 \mathrm{~g}$ |
| :--- | :--- | ---: |
| Mass of container | $=8.68 \mathrm{~g}$ |
| Mass of \mathbf{F} | $=$ |

(a) Calculate the mass of F used in the experiment.

The sample was placed in a beaker and $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide (an excess) was added.

The mixture was heated until the following reaction was complete.

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The reaction was complete when all the ammonia was evolved.
(b) Describe a chemical test for ammonia. test \qquad result

The remaining mixture, which contained excess sodium hydroxide, was transferred to a graduated flask and made up of $250 \mathrm{~cm}^{3}$ with distilled water. This was solution \mathbf{G}.
$25.0 \mathrm{~cm}^{3}$ of \mathbf{G} was transferred to a titration flask and a few drops of phenolphthalein indicator was added.
$0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid was added to \mathbf{G} until an end-point was reached.
Phenolphthalein is colourless in acid and red in alkali.
(c) What was the colour change of the indicator at the end-point?

The colour changed from to

Three titrations were done. The diagrams below show parts of the burette at the be and end of each titration.

1st titration

2nd titration

3rd titration

(d) Use the diagrams to complete the following table.

titration number	1	2	3
final reading $/ \mathrm{cm}^{3}$			
initial reading $/ \mathrm{cm}^{3}$			
volume of hydrochloric acid used $/ \mathrm{cm}^{3}$			
best titration results (\checkmark)			

Summary:
Tick (\mathcal{J}) the best titration results. Using these results, the average volume of hydrochloric acid required was cm^{3}.
(e) Calculate the number of moles of hydrochloric acid in the average volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid in (d).
\qquad
(f) Using the equation

$$
\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Deduce the number of moles of sodium hydroxide in $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{G}.
(g) Using your answer in (f) calculate the number of moles of sodium hydroxide in 2 of solution G.
(h) Calculate the number of moles of sodium hydroxide in $50.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide.
\qquad
(i) By subtracting your answer in (g) from your answer in (h) calculate the number of moles of sodium hydroxide which reacted with the sample of \mathbf{F}.
\qquad
(j) Given that 1 mole of sodium hydroxide produces 17 g of ammonia.

Calculate
(i) the mass of ammonia produced from the original sample,

$$
\mathrm{g} \mathrm{NH}_{3}
$$

(ii) the mass of ammonia produced from 100 g fertiliser.
\qquad

8 The following table shows the tests a student did on substance \mathbf{S} and the conclusion from the observations.

Complete the table by describing these observations and suggest the test and observation which led to the conclusion from test 4.

	Test	Observation	Conclusion
	S was dissolved in water and the solution divided into three parts for tests 2,3 and 4.		\mathbf{S} is not a compound of a transition metal.
	(a) To the first part, aqueous sodium hydroxide was added until a change was seen. (b) An excess of aqueous sodium hydroxide was added to the mixture from (a).		S may contain $\mathrm{Al}{ }^{3+}$ or Zn^{2+} ions.
3	(a) To the second part, aqueous ammonia was added until a change was seen. (b) An excess of ammonia was added to the mixture from (a).		S contains Zn^{2+} ions
4			S contains Cl^{-}ions

Conclusion: The formula for the compound \mathbf{S} is [9]

9 The reaction between aqueous barium chloride and dilute sulphuric acid produces precipitate.
(a) Name and state the formula of this precipitate.
name \qquad
formula
A series of experiments was done to find the mass of precipitate produced.
Solution \mathbf{J} is $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ barium chloride
Solution \mathbf{K} is $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid
$10.0 \mathrm{~cm}^{3}$ of \mathbf{J} was put into each of six test tubes. Increasing volumes of \mathbf{K} were added to each test tube. The mixtures were filtered and the precipitates were washed with water, dried and placed in a weighed container which was reweighed.

The table overleaf shows the results of these experiments.
(b) Complete the final column to give the mass of the precipitate.

volume of $\mathbf{J} / \mathrm{cm}^{3}$	volume of $\mathbf{K} / \mathrm{cm}^{3}$	mass of empty container $/ \mathbf{g}$	mass of container and precipitate $/ \mathrm{g}$	mass of precipitate $/ \mathrm{g}$
10.0	2.0	3.50	3.97	0.47
10.0	4.0	3.50	4.43	
10.0	6.0	3.50	4.70	
10.0	8.0	3.50	5.36	
10.0	10.0	3.50	5.83	
10.0	12.0	3.50	5.83	

(c) Using the grid below, plot the mass of precipitate on the y-axis against the volume of \mathbf{K} on the x-axis. Join the points with two straight lines.

(d) One of the results is incorrect. Circle the result on your graph and suggest correct mass of precipitate should be.
(e) What volume of K would produce 1.60 g of precipitate?
(f) Why was the mass of precipitate the same in the last two experiments?
\qquad
\qquad
(g) The experiment was repeated using the volumes of \mathbf{J} and \mathbf{K} as shown in the table below. Using your results from the first experiment, complete the final column showing the mass of precipitate produced in each case.

volume of $\mathbf{J} / \mathrm{cm}^{3}$	volume of $\mathbf{K} / \mathrm{cm}^{3}$	mass of precipitate $/ \mathrm{g}$
2.0	2.0	
2.0	4.0	
2.0	6.0	

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

