UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the June 2004 question papers

5070 CHEMISTRY					
5070/01	Paper 1 (Multiple Choice), maximum raw mark 40				
5070/02	Paper 2 (Theory 1), maximum raw mark 75				
5070/03	Paper 3 (Practical 1), maximum raw mark 40				
5070/04	Paper 4 (Theory 2 (A2 Core)), maximum raw mark 60				

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5070/01

CHEMISTRY
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabu
	CHEMISTRY – JUNE 2004	5070

	Mark Schen		Syllabu	
	CHEMISTRY - JU	NE 2004	5070	Day .
Question Number	Key	Question Number	Key	Da Cambridg
1	В	21	Α	
2	В	22	В	
3	В	23	D	
4	В	24	D	
5	D	25	С	
	<u>_</u>			
6	В	26	В	
7	D	27	D	
8	В	28	В	
9	A	29	D	
10	С	30	В	
11	В	31	Α	
12	D	32	A	
13	С	33	В	
14	В	34	С	
15	С	35	С	
16	D	36	С	
17	D	37	D	
18	В	38	С	
19	Α	39	С	
20	С	40	Α	

Total = 40

June 2004

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 5070/02

CHEMISTRY Paper 2 (Theory 1)

KEY

a semi colon; indicates a separation of marking points

an oblique line / indicates alternative wording or acceptable alternative

R means reject

A means accept

AW means 'alternative wording'

underlined with a accept this word only, no alternative word is

straight line acceptable

D represents quality mark(s) awarded for diagrams, as

indicated on the Mark Scheme

L represents mark(s) awarded for labels on diagrams,

as indicated on the Mark Scheme

Q represents quality of expression and is used for marks

awarded on free-response questions

Pa	age 1	Mark Scheme	Sylla
	CHEI	MISTRY – JUNE 2004	5070
	<u>Section</u>	A Maximum 45 marks	Cambridge
A.1	four <u>names</u> at {1} each	penalise correct formulae once	only
(a) m	ethane		

Section A Maximum 45 marks

- **A.1** four names at {1} each penalise correct formulae once only
- (a) methane
- (b) potassium nitrate
- (c) potassium nitrate or lead(II) nitrate allow just lead nitrate
- (d) phosphorus oxide or sulphur dioxide

total [4]

			Syllabus No. 10
Page 2	Mark Scheme		Syllabus
	CHEMISTRY – JUNE 2004		5070
A.2 (a) first line	e K 39 p=19, e= 19, n= 20	{1}	Cambridge C
	line K 40 p = 19, e = 19, n = 21	{1}	{2}
(b) any <u>two</u>	from:		

(a)	first line	K 39	p =19, e = 19, n = 20	{1}
	second line	e K 40	p =19, e = 19, n = 21	{1}

{2}

(c)

{1}

(ii)
$$mol H^+ = 0.010$$

{1}

{1}

$$H^{^{+}} + OH^{^{-}} \rightarrow H_2O$$

ignore any state symbols

{1} {1}

{4} on Q. paper, but

{5}

{1}

{2}

total [12]

Page 3	Mark Scheme	Syllabus
	CHEMISTRY – JUNE 2004	5070

ı aş	ge 3			Syllabus
	CHE	MISTRY – JUI	NE 2004	5070
A.3				
(a)	marks only for the reasif any other polymer ch			Syllabus 5070
	useable temp. is above insoluble in oil	e 100 °C	{1} {1}	{2}
(b)	polythene used for clir	g film plastic	bags etc. {1}	{1}
(c)	any <u>two</u> problems fron	n		
(0)			dC:11 -:4	
	non-biodegradable burning gives toxic gas		andfill sites	
				{2}
(d)	structure of poly(prope	ne)		
	correct repeat unit		{1}	
	shows continuation		{1}	{2}
e)				
i)	ester linkage		{1}	
ii)	fats lipids		{1}	
				{2}
(f)	nylon structure		{1}	
	allow protein or nylon (3		

total [10]

Page 4	Mark Scheme	Syllabus
	CHEMISTRY – JUNE 2004	5070

Pag	e 4 Mark Scheme	- 0004	Syllabus
	CHEMISTRY – JUNE	: 2004	5070 Bac
۹.4			Mah
a) i)	equation	{1}	Syllabus Adda Cambridge
	$N_2 + O_2 \rightarrow 2 NO$		`
ii)	more collisions per unit volume or more crowded molecules	{1}	
(ii)	faster molecules hence more frequent collisions	{1} {1}	
	mence more frequent completions	\';	{4}
b)	incomplete combustion	{1}	
			{1} ·····
c) i)	equation	{1}	
')	2 NO + 2 CO 2 CO ₂ + N ₂	/ '/	
,,,,	ignore state symbols		
(ii)	powder has a large surface area hence faster reaction	{1} {1}	

total [8]

{3}

					Syllabu 5070
Pag	je 5		Mark Scheme		Syllabu
		СНІ	EMISTRY – JUNE 2004		5070
A.5					
(a) (i)			gen in the activity seri	es	
	or Cu or Cu	ı ²⁺ gains electron ı ²⁺ is reduced	s more easily than H⁺	{1}	
(::)			-	(-)	
(ii)		tion is electron lo dation state of ox		(1)	
(iii)	equat	ion		{1}	
(111)	•			(')	
	Cu —	• Cu ²⁺ + 2 e ⁻			
(b)					
(i)		d ions cannot mo It ions can move	ove	{1} (1)	
	III IIIE			{1}	
(ii)	catho anode		$e^- \rightarrow 2 \text{ Pb}$	{1}	
			_	{1}	
	allow	{1} if equations r	eversed		

total [7]

Page 6	Mark Scheme	Syllabus	. ×
	CHEMISTRY – JUNE 2004	5070	

Page 6		Mark Scheme CHEMISTRY – JUNE 2004	Syllabus 5070	
A.6 (a)	cova	ılent		Syllabus 5070
(b) (i)		are giant structures <i>or</i> macromolecule y strong bonds to break	es {1}	{1}
(ii)	grap	hite has fewer strong bonds to break	{1}	{3}
(c)		hite conducts, diamond does not calised electrons in graphite	{1} {1}	{2}
				total

Section A. score any 45 from 46

Page 7	Mark Scheme	Syllabus
	CHEMISTRY – JUNE 2004	5070

Section B

B.7

Pag	je 7	Mark Scheme CHEMISTRY – JUNE 200	04	Syllabus 5070 PARCAMBRIDG
Secti	on B			ambric
B.7				18
(a) 	bond b	ormation is exothermic breaking is endothermic energy released than absorbed	{1} {1} {1}	{3}
(b)	diagram shows:			
	activat	d reactant above labelled product. ion energy correctly labelled py change correctly labelled	{1} {1} {1}	{3}
(c)		nat units are not required k (iii) some working required to score	e both	
(i)	finish a	at 35 ± 1	{1}	
(ii)	mols o	of O $_2$ is $60/24000$ = 0.00250	{1} {1}	
(iii)		of $H_2O_2 = 2x0.0025 = 0.0050$ of $H_2O_2 = 20x0.0050 = 0.10$	{1} {1}	{5}

score any [10] from [11]

Page 8	Mark Scheme	Syllabus
	CHEMISTRY – JUNE 2004	5070

Page 8 Mark Scheme Syllabu
CHEMISTRY – JUNE 2004 5070
Page 8 Mark Scheme Syllabut CHEMISTRY – JUNE 2004 5070 B.8 (a) (i) equation $\{1\}$ $2 \text{ NiS} + 3 \text{ O}_2 \rightarrow 2 \text{ NiO} + 2 \text{ SO}_2$
(a) (i) equation {1}
$2 \text{ NiS} + 3 \text{ O}_2 \rightarrow 2 \text{ NiO} + 2 \text{ SO}_2$
(ii) $(59 + 32)$ kg NiS forms $(32 + 32)$ kg SO ₂ {1} 182 kg NiS forms $182x64/91 = 128$ kg SO ₂ {1}
(b) it is covalent {1}
because low b.p. {1}
shows small forces present {1}
(c) compound and problem both needed {1} e.g. SO ₂ causes acid rain or an effect of acid rain CO ₂ causes greenhouse effect or an effect of warming CO is toxic
OC IS TOXIO
(d) used in hydrogenation of alkenes {1}
(e) Ni + $Zn(NO_3)_2$ no reaction {1}
Ni + Cu(NO ₃) ₂ soln changes blue to green and/or pink solid {1}
an equation {1}
$Zn + Ni^{2+} \rightarrow Zn^{2+} + Ni$ $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ $Ni + Cu^{2+} \rightarrow Ni^{2+} + Cu$

Page 9	Mark Scheme	Syllabus
	CHEMISTRY – JUNE 2004	5070

hus PapaCambridge.com equation {1}

 $C_{12}H_{26} \rightarrow C_2H_4 + C_{10}H_{22}$ et.al.

(b) ethene diagram {1} {1}

mols C = 0.72/12 = 0.06(c) all three needed mols H = 0.18/1 = 0.18mols O = 0.96/16 = 0.06for {1}

B.9

(a)

formula is C₆H₁₈O₆ hence empirical is CH₃O {1}

{3}

(d) react with steam {1}

using phosphoric acid and one of 300 ° to 600 °C; 60 to 80 atmos. {1}

just heat, pressure, catalyst scores {1} only {3}

(e) (i) colour changes from orange to blue/green {1} structure of ethanoic acid {1}

> allow full structure or condensed versions e.g. CH₃CO₂H; CH₃COOH

(ii) product structure {1}

> $(CO_2H)_2$ or $(CHO)_2$ or HOCH₂.CO₂H

> > {3}

					www
Page	10		Mark Scheme		Syllabus
		CHE	MISTRY – JUNE 2004	4	5070
B.10					Syllabus 5070 Add Canning Connection Connectica Connection Connect
(a)	no mark for	Fe ₃ O ₄ alone)		Se.Co
	% Fe's are	Fe_2O_3 Fe_3O_4 $FeCO_3$	122/160 = 70.0 168/232 = 74.4 56/126 = 48.2	{1} {1} {1}	The state of the s

% Fe's are
$$Fe_2O_3$$
 122/160 = 70.0 {1}
 Fe_3O_4 168/232 = 74.4 {1}
 $FeCO_3$ 56/126 = 48.2 {1}

{3}

(b) four equations plus four statements at {1} each allow statements using oxidation states

$$C + O_2 \rightarrow CO_2$$

C oxidised and O_2 reduced

$$C + CO_2 \rightarrow 2 CO$$
C oxidised and CO_2 reduced

$$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$$

 Fe_2O_3 reduced and CO oxidised

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

Fe₂O₃ reduced and C oxidised

{4}

(c) metals have +ve ions in sea of electrons {1} ions can slide around {1}

{2}

low carbon gives softer/more malleable steel {1} (d) carbon disrupts the packing {1}

{2}

score any [10] from [11]

June 2004

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 5070/03

CHEMISTRY
Paper 3 (Practical 1)

www.PapaCambridge.com

			Syllabu Adhay
Pag	e 1	Mark Scheme	Syllabu
		CHEMISTRY – JUNE 2004	5070
		ximum 20 marks 3 marks for each reading within 1°C of the Supervisor's v 1 mark for each reading within 2°C of the Supervisor's va	alue.
		Any subtraction error (-1), but give the 'accuracy' mark on	the corrected

1 Maximum 20 marks

Any subtraction error (-1), but give the 'accuracy' mark on the corrected value.

(b) 1 mark for plotting all the points correctly, tolerance one small square.

Give one mark for two straight lines that intersect, provided that the first two points are used for one of the lines and the second two points for the second line.

Give 1 mark for each straight line which has been extrapolated so that it passes through the 'origin'.

Curves score zero

- (c) Highest temperature from the graph. This must be from the point of intersection of the two straight lines.
- (d) Corresponding values for the volume of P and Q (both correct).

Candidates who fail to score in (c) can score in (d), provided the values correspond to the temperature given in (c).

(e) Concentration of sodium hydroxide in Q. Method (1) answer (1)

Candidates who give the incorrect volumes in (d) can score consequentially.

There are no marks for the correct evaluation of an incorrect expression, answers are required correct to two significant figures.

Candidates with the correct answer but no working score (1).

(4)

(1)

(1)

(2)

Page 2	Mark Scheme	Syllabus	.0
	CHEMISTRY – JUNE 2004	5070	10.
			0

Solution Test 1	S (copper sulphat Blue ppt Ppt turns brown or Gas turns litmus bl Ammonia produce	re + ammonia) black lue d	(1) (1)
		n, powder but not substance, particles, deposit, residue, insoluble for precipitate	
Test 2	blue ppt	[ppt (1) colour (1)]	(2)
	soluble in excess a blue solution	acid	(1) (1)
	allow colourless or pale	e green or blue	
Test 3	White ppt	[ppt (1) colour (1)]	(2)
	Insoluble in acid Dark blue solution	becomes paler or colourless	(1) (1)
	Blue ppt turns to a whit	te ppt scores (2)	
Test 4	Pale blue ppt allow	any colour of ppt or even turns cloudy etc	(1)
	Soluble in excess Colourless or pale	blue solution	(1) (1)
Test 5	No reaction		
	White ppt Brown or yellow so	blution	(2) (2)
		ppt and brown/yellow and an additional mark for and brown/yellow to the solution	
	Solution becomes of	colourless or white ppt	(1)
Conclusion	on The ions are SO ₄ ²⁻		

requires a ppt in Test 3 which does not dissolve when acid is added NH₄⁺ requires ammonia named or tested for in Test 1 Cu²⁺ Any two ions to score, (-1 for names)

All points to score up to a paper mark of 40.

June 2004

GCE A LEVEL

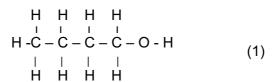
MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 5070/04

CHEMISTRY
Paper 4 (Theory 2 (A2 Core))

					Why.		
Page 1		Mark S	Scheme		Syllan	2	
		CHEMISTRY	– JUNE 2004		5070	No.	
1 (a) Pippet (b) Saftey (c) To pre	/ bulb (1)	ntering the mo	uth (1)			Papacambridge.	-
(b) Hydro (c) Sodiur [Any tv (d) Sodiur (e) Blue (f) 2Na	gen (1) pops m moves aro vo (2)] m hydroxide 1) + 2F	in a flame (1) und the surfac		lves, reacts	(1) violently.	[8]	0
(c) (i) 0.00 reaction of hyd (d) 0.005 x (e) 0.12dm	lime water m 05 (ii) 0.01 (1 on shows that rochloric acid x 24 = 0.12dr n ³ (1) Magnes	(iii) No (1) t one mole of o d (1). n ³ (1) sium carbonate	calcium carbonate e (0.0059 moles) C <i>l</i> as before (1).	·		[9]	
4 to 8	(b), (a), (d	c), (b), (d) 1 m	ark each			[4]	
9 (a) 6.96 g	(1)	to pink or pur 48.6 23.3 25.3			1 mark for ea correct row <u>c</u> column (3)	ich	
	Mean valı	ue = 25.4 cm³ ((1)				
(d) 0.0005	608 (1) (e) 0.00254 (1)					


(d) 0.000508 (1) (e) 0.00254 (1) (f) 0.0254 (1) (g) 3.86 g (1) (i) 0.172 g (1)

[13]

- **10 1** coloured solution (1)
 - 2 blue precipitate (1) insoluble in excess (1)
 - 3 blue precipitate (1) soluble in excess (1) forming a DEEP blue solution (1)
 - 4 dilute nitric acid (1) aqueous silver nitrate (1) white precipitate (1)

Formula CuCl₂(1)

Page 2	Mark Scheme	Syllax
	CHEMISTRY – JUNE 2004	5070
11 (a) (i) ((b) (i)	0.46 g (1) (ii) 36.3 and 25.8 (1) rise in T = 10.5 (1)	Cambridge.com
	нннн	

- (ii) 74 (1)
- (iii) 0.0062 moles (1)
- (iv) 1693 kJ/mol (1)
- (c) points correctly plotted (1), smooth curve (1).
- (d) (i) 0.062 g (1) (please read candidate's graph) (ii)

(e) To eliminate error due to heat losses, to standardize the experiment or act as a control etc (1)