www.papacambridge.com MARK SCHEME for the October/November 2006 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme Syllab.	per
		GCE O LEVEL - OCT/NOV 2006 5070	
		Section A	76.
		Section A	Tigo.
A1(a)	(i) (ii) (iii) (iv)	 A/sulphur dioxide E/zinc oxide C and E/sodium bromide and zinc oxide (<u>both required</u>) C/sodium bromide 	
(b)		CH ₂ Br	[1
(c)		by (incomplete) combustion of fossil fuels/hydrocarbons/carbon source ALLOW: from car exhausts/engines; gas fires/boilers NOT: from cars/vehicles (alone) NOT: combustion (alone)	[1
			[Total 6
A2(a)	(i)	the <u>more reactive the metal the higher</u> the (decomposition)	
		temperature/the less readily the carbonate is decomposed (or reverse argument)	[1
		NOTE: comparison essential	L ·
	(ii)	NOT: the smaller the cation, the lower the decomposition temperature $MgCO_3 \rightarrow MgO + CO_2$ (ignore state symbols)	[1
(b)	(i)	to produce more petrol/more of the useful fractions/more of the	
	.,	petrol fraction/to produce ethene/alkenes/fractions with higher demand	
		ALLOW: to produce plastics	[1
		NOT: more profitable NOT: produces smaller molecules/break down petrol fractions.	
	(ii)	high temperature;	
		catalyst;	
		ALLOW: aluminium oxide/alumina	[2
	(iii)	$2C_2H_4/C_4H_8$ on right	[1
			[Total 6
A3(a)		225 seconds ALLOW: 220-230 (s)	[1
(b)		90/24000 = 0.0038 moles/3.75x10 ⁻³ (moles)	[1
(c)		gradient greater at start;	
		ends up at the same volume (90cm ³) + flattens out NOT: line goes well above 90 cm ³ then drops down again	[2
(d)		HCl particles/ H^+ ions closer together when solution more concentrated	
		NOT: more moles means more particles/more H^+ ions	
		more frequent collisions (with calcium carbonate);	[2
		NOT: more chance of collisions	[Total 6

Page 3			Mark Scheme		Syllabu A	per
		GCE O	LEVEL - OCT/N	OV 2006	5070	000
A4(a)		light bulbs/fluorescent tubes/lasers/provides inert atmosphere/in arc welding/refining of titanium OR zirconium NOT: lights (alone)/bulbs (alone)			ambridge	
(b)		complete/full outer electron shell ALLOW: atoms cannot gain/lose/share electrons (easily) NOT: 8 electrons in outer shell unless specify He with 2 NOT: reference to stability				
(c)						
(-)		isotope	number of protons	number of electrons	number of neutrons	
		³⁶ Ar ¹⁸	18	18	18	
		40 Ar 18	18	18	22	
		6 boxes co	rrect = 2 marks;	5 boxes correct =	1 mark	[2
(d)		elements in	Periodic Table a	rranged in order o	f atomic number/	
()		number of p NOT: they	protons have different am	ount of isotopes		[1
(e)		Xe + $2F_2$	\rightarrow XeF ₄			[1
(f)		lower than ALLOW: co NOT: belov NOT: vertic	argon prect position dra v the bar ally down/facing o	wn on diagram downwards		[1
						[Total 7
A5(a)	(i) (ii)	20% ALLOW: 19 add (aqueo	9-21% bus) sodium hydro	xide/(aqueous) ar	nmonia;	[1
		red-brown NOT: red p	rmuiae precipitate/red-bro pt	own solid		[2
(b)	(i)	solid particl ALLOW: filt ALLOW: se	es sediment/fall to tration edimentation	o bottom		[1
	(ii)	NOT: centr Al ₂ (SO ₄) ₃	ifugation/distillatio	on/decanting		[1
(c)	(i)	to remove t	astes/odours			[1
	(ii)	ALLOW: at to kill bacte ALLOW: to ALLOW: to	osorbs colours ria/sterilise water, kill micro-organis get rid of bacteria	/disinfect water ms/kills germs a etc		[1
(d)	(i) (ii)	Ca(OH)₂ + OH⁻ + H⁺	$2HCl \rightarrow CaCl_2 \rightarrow H_2O$	+ 2H ₂ O		[] [1 [T_t_t_t]

Page 4		Mark Scheme Syllabu 🔗	per	
		GCE O LEVEL - OCT/NOV 2006 5070	30	
A6(a)		correct structure showing 4 paired dots and crosses	ambrid	
(b)	(i)	vibrating/not moving; regular arrangement/lattice ALLOW: closely packed	3	0.0
	(ii)	Any two of: pressure decreases (as ice melts)/		
		temperature increases/ ALLOW: high temperature the forces between the <u>molecules</u> are weak		[
	(iii)	NOT: methane hydrate is unstable methane causes global warming/melting of (polar) ice caps/melting o glaciers/desertification/rise in sea levels/extreme climate changes/ change in animal habitate	f	r
(c)		(bacterial) decomposition of vegetable waste/paddy fields/marshes/		L
		cow flatulence/landfill sites etc ALLOW: bacterial decomposition		[
(d)		fuel/ <u>making</u> synthesis gas/ <u>manufacture</u> of ethyne/ <u>making</u> carbon black/ <u>making</u> hydrogen cyanide/ <u>making</u> methanol ALLOW: (for) heating/(for) cooking NOT: as household gas/natural gas NOT: from petroleum refining/fossil fuels		[
(e)		reactants on left and products on right; product level below reactant level <u>and</u> ΔH correctly labelled; activation energy correctly labelled;	[Total	[1
		TOTAL PART A = 45		
B7(a)		nitrogen has gained electrons/oxidation number of nitrogen has decreased;		[
		ALLOW: N changes from 0 to -3 NOT: removal of oxygen/addition of hydrogen		
(b)		$2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$		[
(c)	(i)	nitrogen from the air/atmosphere; hydrogen from methane/natural gas/water/cracking <u>hydrocarbons;</u> IF: (nitrogen and hydrogen) from the air = 1		[
	(ii)	Any two of the following specified conditions: range 380-450°C/ ALLOW: any specific temperature in range 350-480°C; NOT: high temperature pressure 200 atm/ ALLOW: any pressure in range between 180-220 atm; NOT: high pressure		

		-	they are	
Page 5		Mark Scheme GCE O LEVEL - OCT/NOV 2006	Syllabe Abar 5070	er
(d)		correct molar masses i.e. 80 and 132; ammonium nitrate: (28/80) x 100 = 35%; ammonium hydrogen phosphate: (28/132) x 100) = 21.2%/21%;	bridge
(e)		eutrophication/increase in algal growth (on surfaction) bloom/reduction of dissolved oxygen in water/wat	e of water)/algal er plants die	Conn Total 401
B8(a)		$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$		[10tal 10] [1]
(b)	(i) (ii)	more moles/molecules of gas on left than on right ALLOW: 3 volumes (of gas) on left and 2 on right/ on left than right increase in pressure will not have much effect on difference in number of moles on each side of equ OR higher pressure means higher concentration of co ALLOW: sulphur dioxide/trioxide is very corrosive OR	more volumes of gas reaction/not much uation	[1]
	(iii)	cheaper/more economic to carry out reaction at a reaction is exothermic/ ΔH is negative; if heat given out equilibrium shifts to left/reaction s reactants/cooling favours the forward reaction	tmospheric pressure shifts in favour of	[1]
(c)		filter solution (to remove excess iron); concentrate solution by warming/letting solution e evaporate solution (then leave to crystallise) ALLOW: leave to crystallise NOT: evaporate to dryness	vaporate/partially	[2]
(d)		moles NaOH = 0.15 x 20/1000 = 3 x 10^{-3} mol; moles H ₂ SO ₄ = 3x10 ⁻³ x $\frac{1}{2}$ = 1.5x10 ⁻³ mol; 1.5x10 ⁻³ x 1000/12 = 0.125 (mol/dm ³)		[3] [Total 10]
B9(a)	corre	ect structure of butanoic acid (all atoms and bonds OW: OH in place of O – H	must be shown)	[1]
(b)	(i) (ii)	not completely ionised in solution/has high propor molecules in solution/has small proportion of H ⁺ io not fully dissociated test with universal indicator/pH meter; ALLOW: test with pH paper NOT: test with indicator paper	tion of unionised	[1]
		has pH between greater than 3 <u>and</u> less than //st OR solution of the acid turns universal indicator yo NOT: has high pH/pH above 3 (alone)	ated pH in that range ellow/orange	[2]
(c)		C = $0.18/12$ H = $0.03/1$ O = $0.08/16$; empirical formula = C_3H_6O ; molecular formula = $C_6H_{12}O_2$ (1 mark)		[2] [1]

Page 6		Mark Scheme	Syllabu	per
		GCE O LEVEL - OCT/NOV 2006	5070 00	
(d)	(i) (ii)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ potassium dichromate + (concentrated) sulphuric acid; ALLOW: other reasonable oxidising agents heat/reflux/warm ALLOW: bacteria; room temperature/stated temperature not above 45°C or below 5°C		
B10(a)		Any three of: anode/impure copper electrode: decreases in a (impurities) deposits below the anode/anode g dissolves; cathode: copper deposited/increases in thickne ALLOW: goes pink anode: Cu \rightarrow Cu ²⁺ + 2e ⁻ ;	thickness/solid ets smaller/anode ess/gets larger;	
		cathode: $Cu^{2+} + 2e^- \rightarrow Cu$		[;
(b)	(i) (ii)	(some of the) electrons in metals are delocalis to) move/sea of electrons can move NOT: electrons are free solid copper sulphate has ions in fixed position ions which don't move/held in the (crystal) latti	ed/electrons are (free n/not free to move/	[
		REJECT: do not have ions in solution ions are free to move/ions move NOT: the ions are free (reference to electrons = 0 for the second mark	k)	[;
(c)		iron object/knife made the cathode/made the n anode is nickel + solution of nickel salt (both p ALLOW: nickel nitrate/nickel sulphate/nickel ch nickel compound NOT: nickel oxide/nickel hydroxide	egative electrode; oints needed); nloride/other soluble	[
(d)		in copper metal atoms/ions/particles arranged slide/slip over each other; (both 'layers' and 'sl NOT: layers move ACCEPT: diagrams if reasoning clear in alloy <u>different sized</u> atoms/ions/particles sto 2 nd type of atom/ions/particles disrupts the reg	in layers which can ide/slip' needed); p layers from slipping/ ular structure of the	
		metal		[2