MANN. IGE TAINS. COM

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3

0620/03

October/November 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name		
Centre	Candidate	
Centre Number	Number	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

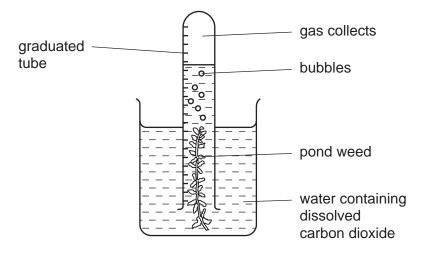
Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part questions.

A copy of the Periodic Table is printed on page 16.


For Examir	ner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 15 printed pages and 1 blank page.

1 (a)	Two of the gases in air are nitrogen and oxygen. Name two other gases present in unpolluted air.
	[2]
(b)	Two common pollutants present in air are sulphur dioxide and lead compounds. State the source and harmful effect of each. sulphur dioxide
	source
	harmful effect [3]
	lead compounds
	source
	harmful effect [2]
(c)	Respiration and photosynthesis are two of the processes that determine the percentage of oxygen and of carbon dioxide in the air.
	(i) Name another process that changes the percentages of these two gases in air.
	[1]
	(ii) The equation for photosynthesis is given below.
	$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$
	This is an endothermic reaction.
	Complete the reaction for respiration.
	C ₆ H ₁₂ O ₆ + 6O ₂ → +
	This is an reaction.
	[2]

(d) The rate of photosynthesis of pond weed can be measured using the following experiment.

For Examiner's Use

(i)	Describe how y	ou could st/	now that the ga	s collected in this	s experiment is	oxygen.
-----	----------------	--------------	-----------------	---------------------	-----------------	---------

	_
.01	7
الم	-]

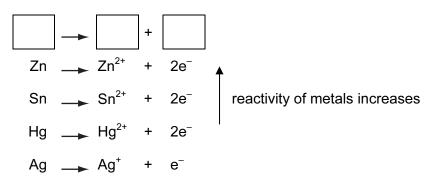
(iii) What would be the effect, and why, of moving the apparatus further away from the light?

[2]

2

The salt acid.	copper(II) sulph	ate can be prepa	ared by rea	cting coppe	er(II) ox	xide with sulphuric
Complet	e the list of instru	ctions for making	copper(II) s	sulphate usi	ng six (of the words below.
blu	e cool	dilu	e	filter		
	saturated	sulphate	white	C	oxide	
Instruction	ons					
1	Add excess cop					sulphuric acid in a
2		to	remove the	unreacted o	copper((II) oxide.
3	Heat the solutio	n until it is].	
4		th	e solution to	form		
	coloured crystal	s of copper (II)				

_				
3	The simplest	alcohol	İS	methanol.


(a) It is manufactured by the following reversible reaction.

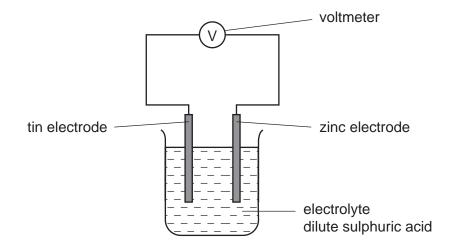
	CO (g) + $2H_2$ (g) \rightleftharpoons CH ₃ OH (g) 300 °C 30 atm	
(i)	Reversible reactions can come to equilibrium. Explain the term equilibrium.	
	[1	 1]
(ii)	At 400 $^{\circ}\text{C}$, the percentage of methanol in the equilibrium mixture is lower than a 300 $^{\circ}\text{C}$. Suggest an explanation.	at
	[2	 2]
(iii)	Suggest two advantages of using high pressure for this reaction. Give a reason for each advantage.	
	advantage	
	reason	
	advantage	
	reason	
	[5	5]
	<u> </u>	

b) (i)	Complete the equation for the combustion of methanol in an excess of oxygen.	
	CH ₃ OH +	[2]
(ii)	Complete the word equation.	
(iii	methanol + ethanoic acid → +	[2]
		[1]

4 In the following list of ionic equations, the metals are in order of reactivity.

For Examiner's Use

- (a) (i) In the space at the top of the series, write an ionic equation that includes a more reactive metal. [1]
 - (ii) Define oxidation in terms of electron transfer.


[1]

(iii) Explain why the positive ions are likely to be oxidising agents.

(iv) Which positive ion(s) can oxidise mercury metal (Hg)?

(b) The following diagram shows a simple cell.

For Examiner's Use


(i) Predict how the voltage of the cell would change if the tin electrode was replaced with a silver one.

(ii) Which electrode would go into the solution as positive ions? Give a reason for your choice.

(iii) State how you can predict the direction of the electron flow in cells of this type.

5 Strontium and sulphur chlorides both have a formula of the type XCl_2 but they have different properties.

For Examiner's Use

property	strontium chloride	sulphur chloride		
appearance	white crystalline solid	red liquid		
melting point / °C	873	-80		
particles present	ions	molecules		
electrical conductivity of solid	poor	poor		
electrical conductivity of liquid	good	poor		

particles present	ions	molecules						
electrical conductivity of solid	al conductivity of solid poor poor							
electrical conductivity of liquid	good	poor						
(a) The formulae of the chlorides are similar because both elements have a valency of 2. Explain why Group II and Group VI elements both have a valency of 2.								
	[2]							
molecule of sulphur chloride. Use x to represent an electro								
		[3]						
c) Explain the difference in electrical	conductivity between the foll	owing.						
(i) solid and liquid strontium	(i) solid and liquid strontium chloride							
	[1]							
(ii) liquid strontium chloride a	and liquid sulphur chloride							
	[1]							

6	gases	rs are extensively used in food packaging. Poly(dichloroethene) is used because can only diffuse through it very slowly. Polyesters have a high thermal stability and n be cooked in a polyester bag.
	(a) (i)	The structure of poly(dichloroethene) is given below.
		$ \begin{array}{c cccc} H & Cl \\ \hline C & C \\ & C \end{array} $ $ \begin{array}{c cccc} H & Cl \\ & Cl \end{array} $
		Draw the structural formula of the monomer.
		[1]
	(ii)	Explain why oxygen can diffuse faster through the polymer bag than carbon dioxide can.
		[2]

(b) (i) A polyester can be formed from the monomers HO-CH $_2$ CH $_2$ -OH and HOOC-C $_6$ H $_4$ -COOH. Draw the structure of this polyester.

0620/03/O/N/04

[2]

© UCLES 2004

For Examiner's Use

(li)	Name a naturally occurring class of compounds that contains the ester linkage.	For Examiner's
	[1]	Use
(iii)	Suggest what is meant by the term thermal stability.	
	[1]	
(c) (i)	Describe two environmental problems caused by the disposal of plastic (polymer) waste.	
	[2]	
(ii)	The best way of disposing of plastic waste is recycling to form new plastics. What is another advantage of recycling plastics made from petroleum?	
	[1]	

7

(a)	(i)	Write a symbol equation for the act	ion of heat on zinc hydroxide.	
				[2]
	(ii)	Describe what happens when solid	sodium hydroxide is heated	strongly.
				[1]
(b)	Wha	t would be observed when copper(II) nitrate is heated?	
				[3]
(c)	forn was	o(III) sulphate decomposes when ned and the volume of sulphur trios heated. ss of one mole of Fe ₂ (SO ₄) ₃ is 400 g.	xide produced when 10.0 g o	
		$Fe_2(SO_4)_3$ (s) \longrightarrow	► Fe ₂ O ₃ (s) + 3SO ₃ (g)	
		Number of moles of $Fe_2(SO_4)_3 =$		
	N	umber of moles of Fe ₂ O ₃ formed =		
		Mass of iron(III) oxide formed =	g	
	N	umber of moles of SO ₃ produced =		
	٧	olume of sulphur trioxide at r.t.p. =	dm ³	[5]

8 The alkenes are a homologous series of unsaturated hydrocarbons.

For Examiner's Use

(a) The table below gives the names, formulae and boiling points of the first members of the series.

name	formula	boiling point/°C		
ethene	C ₂ H ₄	-102 -48		
propene	C ₃ H ₆			
butene	C ₄ H ₈	-7		
pentene	C ₅ H ₁₀	30		
hexene				

			butene	C ₄ H ₈	-7	
			pentene	C ₅ H ₁₀	30	
			hexene			
	(i)	Complete point.	e the table by givir	ng the formula of h	exene and by pred	dicting its boiling
	/::\	Dadwaa	4h - famoula of the		a malativa maalaavil	
	(ii)		the formula of the ur working.	alkene which has	a relative molecula	ar mass of 168.
						[2]
(b)	Des	cribe a te	st that will distinguis	sh between the two	isomers, but-2-ene	and cyclobutane.
	tes	st				
	res	sult with b	ut-2-ene			
	res	sult with c	yclobutane			[3]

(c)	Alkenes	undergo addition reactions.
	(i)	What class of organic compound is formed when an alkene reacts with water?
		[1]
	(ii)	Predict the structural formula of the compound formed when hydrogen chloride reacts with but-2-ene.
		[1]
	(iii)	Draw the structure of the polymer formed from but-2-ene.
		[2]

BLANK PAGE

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	Helium	20 Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon	Rn Radon		175 Lu Lutetium	Lr Lawrencium 103
	=	2	19 Fluorine 10	35.5 C1 Chlorine 18	80 Br Bromine 35	127 I lodine 54	Astatine 86		173 Yb Ytterbium 70	Nobelium L
	5		16 Oxygen	32 S Sulphur 17	79 Se Selenium 35		Po olonium		169 Tm Thulium 69	Md Mendelevium
			- ∞	16			ω		167 Er Erbium 69	
	>		14 N itrogen 7	31 Phosphorus	AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth		89	m Fermium
	≥		12 Carbon	28 Si Silicon	73 Ge Germanium	S Tin	207 Pb Lead 82		165 Ho Holmium 67	
	≡		11 B	27 A1 Auminium 13	70 Ga Gallium	115 In Indium 49	204 T £ Thallium		162 Dy Dysprosium 66	Californium
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium
Group	<u>-</u>				59 N ickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Ģ	5		1		59 Co Cobalt	Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium
		T Hydrogen			56 Fe Iron	101 Rut Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	Neptunium
					55 Nn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 C Uranium
					Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
					51 Vanadium	Niobium 41	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium
					48 T Titanium	2r Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
				I	Scandium 21	89 ×	139 La Lanthanum s57 *	227 Ac Actinium 89	d series eries	a = relative atomic massX = atomic symbolb = proton (atomic) number
	=	-	9 Be	Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series	« × □
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 R b Rubidium 37	133 Csesium 55	Fr Francium 87	*58-71 L 90-103,	Key

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).