www.igexarns.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 0620 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	E	F	
Component 3	80	58	30	16	11	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

IGCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY Extended Theory

	ı ug	· ·			IGCSE – J		<u> </u>		0620	1 u	3
1	(a)		chlorine	orange,		en		I	0020		[1]
			gas, <u>liqui</u> all three r								[1]
		` '	colourles: gas	s or (pale) yellow						[1] [1]
	(b)	Must	t have a d	correct rea	agent othe	erwise wo	c = 0				
		yello	w or orar	water or b nge or bro r grey cry		hlorine g	as				[1] [1]
					darker tha	n for bror	mide)				[1]
		off w yello	hite or pa w <u>precipi</u>	ale yellow <u>tate</u> insol	uble in aqı	precipita ueous an	<u>ate</u> or soluble nmonia solubility in a			onia	[1] [1] [1]
		pale	yellow o		i) • or cream uble in aqu						[1] [1] [1]
			-				lysis, iron(III) m manganat	•	etc.		
	(c)	_	3C <i>l</i> ₂ = naving eit	-	ants or pro	oducts co	orrect ONLY	[1]			[2]
	(d)	chlo		M _r or lowe	er density	or lighte	r molecules o	or mol	ecules move	faster	[1] [2]
		OR	smalle				nt or sieve id	ea [0]			
										TOTA	AL = 12
2	(a)		_	Zn ²⁺ + 2I ther react		oducts co	orrect ONLY	[1]			[2]
	(b)			odium hyexcess (or	droxide Ily if precip		orecipitate ntioned)				[1] [1]
		Mark		rst (sodiu			results queous amm hat the other				[1] then an

Syllabus

Paper

Page 1

	Pag	e 2		llabus	Paper
			IGCSE – JUNE 2005	0620	3
	(c)	(i)	zinc <u>and</u> a reason Do not mark conseq to iodine in excess		[1]
		(ii)	final mass of zinc bigger or the level section higher or less z gradient less steep or longer time or falls more slowly	zinc used u	o [1] [1]
		(iii)	steeper gradient same loss of mass of zinc		[1] [1]
					TOTAL = 10
3	(a)	(i)	CH ₃ -CH==CH ₂		[1]
		(ii)	conseq to (i) correct repeat unit COND evidence of continuation		[1] [1]
		(iii)	monomer COND because it has a double bond or unsaturated or alke NOT addition	ne	[1] [1]
	(b)	(i)	to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate		[1]
		(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased		[1]
		(iii)	silver chloride		[1]
	(c)	(i)	name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. C ₁₇ H ₃₅ etc. Mark for formula only - [1]		[1] [1]
		(ii)	alcohol or alkanol NOT a named alcohol		[1]
	(d)	(i)	acid loses a proton base accepts a proton		[2] [1]
			OR same explanation but acid loses a hydrogen <u>ion</u> (1) and base gains hydrogen <u>ion</u> (1)		
		(ii)	only partially ionised or poor hydrogen ion donor or poor pr NOT does not form many hydrogen ions in water or low con ions NOT pH		

	Pag	e 3	Mark Scheme	Syllabus	Paper
			IGCSE – JUNE 2005	0620	3
4	(a)	(i)	correct word equation (carbon dioxide and water) Accept correct symbol equation		[1]
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add bari COND white precipitate NOT lead(II) compounds	um ions	[1] [1]
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less		[1]
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]		[2]
		(ii)	unpleasant smell or it is poisonous or when burnt for dioxide or forms sulphuric acid NOT it is a pollutant	ms acid rain	or forms sulphur [1]
		(iii)	2H to 1S COND 8e around sulphur atom 2e per hydrogen atom THREE correct TWO from above [1] lonic structure = [0]		[2]
	(c)	(i)	vanadium oxide or vanadium(V) oxide or vanadium pen Must be correct oxidation state if one given	toxide or V₂0	O ₅ [1]
		(ii)	400 to 500° C		[1]
		(iii)	add to (concentrated) sulphuric acid NOT dilute COND (upon sulphuric acid) above then add water		[1] [1]
	(d)	mol mol	es of one mole of $CaSO_4 = 136$ es of $CaSO_4$ in 79.1g = 0.58 accept 0.6 es of H_2O in 20.9 g = 1.16 accept 1.2 aseq x = 2 x given as an integer		[1] [1] [1]
					TOTAL = 16
5	(a)	(i)	A is glutamic acid B is alanine Accept names only, NOT $R_{\rm f}$ values		[1] [1]
		(ii)	because acids are colourless or to make them visible or to show positions of the samples or distance travelled	d	[1]
		(iii)	compare with known acids or reference samples or star Accept from colours of samples	ndards	[1]
		(iv)	amide linkage COND different monomers continuation Accept hydrocarbon part of chain as boxes If nylon 6 then only one monomer [1] NOT different mon	omers	[1] [1] [1]

Page 4		Mark Scheme	Syllabus	Paper
		IGCSE – JUNE 2005	0620	3
(b)	corr	ect structure as syllabus (box representation) ect linkageO tinuation		[1] [1]
(c)	(i)	$C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$ not balanced [1] Accept C_2H_6O		[2]
	(ii)	gives out <u>energy</u> or equivalent NOT heat N.B. a total of [1] not [2]		[1]
	(iii)	glucose used up or yeast 'killed' by ethanol NOT yeast used up NOT reactant	used up	[1]
	(iv)	oxidise alcohol to acid or to ethanoic acid or to carbon dioxide and water or if oxygen present aerobic respiration or cannot have anaerobic respiration in presence of NOT it is anaerobic respiration, must be additional contents.		[1]
	(v)	fractional distillation		[1]
				TOTAL = 15
o (-)	<i>(</i> :)	h avvida		
6 (a)	(1)	bauxite		[1]
	(ii)	to reduce melting point or improve conductivity or as a solvent or reduce the working temperature		[1]
	(iii)	carbon dioxide or monoxide or fluorine		[1]
(b)	(i)	aluminium		[1]
	(ii)	solution goes colourless or copper formed or a <u>brown solid</u> forms or blue colour disappears or bubbles NOT goes clear or copper formed		[1]
	(iii)	covered with an oxide layer		[1]
(c)	read	etion no reaction		[1]
()	read			[1]
(d)	(i)	$2Al(OH)_3 = Al_2O_3 + 3H_2O$ Not balanced [1]		[2]
	(ii)	Aluminium nitrate = aluminium oxide + nitrogen did only TWO correct products [1]	oxide + oxygen	[2]
				TOTAL = 12