www.igesams.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3 (Extended)

0620/03

May/June 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name						
Centre Number				didate		
Number			Numl	ber		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.
WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO **NOT** WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

Answer all questions.

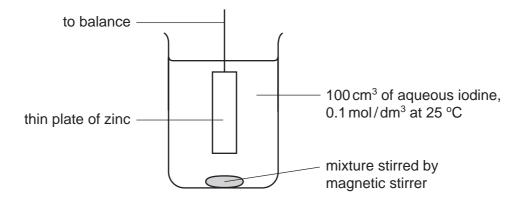
The number of marks is given in brackets [] at the end of each question or part questions.

A copy of the Periodic Table is printed on page 16.

For Exam	niner's Use
1	
2	
3	
4	
5	
6	
Total	

This document consists of 14 printed pages and 2 blank pages.

1

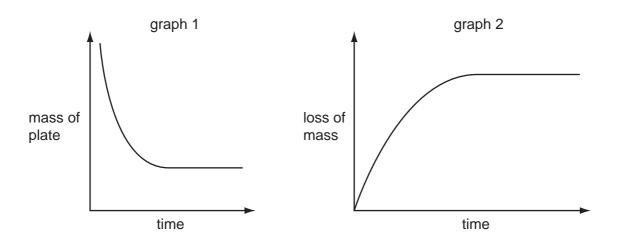

Thre	ee o	f the halogens in Group VII are: chlorine bromine iodine	
(a)	(i)	How does their colour change down the Group?	
		[1]
	(ii)	How does their physical state (solid, liquid or gas) change down the Group?	
		[1]
((iii)	Predict the colour and physical state of fluorine.	
		colour	
		physical state [2	<u>'</u>]
(b)		scribe how you could distinguish between aqueous potassium bromide and aqueou assium iodide.	S
	test		
	res	ult with bromide	
	res	ult with iodide [3]
(c)		15 moles of iodine react with 0.045 moles of chlorine to form 0.030 moles of a singleduct. Complete the equation.	е
	I ₂	+ Cl ₂	2]
(d)		ces of chlorine can be separated from bromine vapour by diffusion. ich gas would diffuse the faster and why?	
			1■
		[2	<u>'</u>]

© UCLES 2005 0620/03/M/J/05

2 The following apparatus was used to measure the rate of the reaction between zinc and iodine.

For Examiner's Use

[3]


The mass of the zinc plate was measured every minute until the reaction was complete.

(a)	Write an ionic equation for the redox reaction that occurred between zinc atoms and iodine molecules.
	[2]
(b)	Describe how you could show by adding aqueous sodium hydroxide and aqueous ammonia that a solution contained zinc ions.
	result with sodium hydroxide
	excess sodium hydroxide
	result with aqueous ammonia

excess aqueous ammonia

(c) From the results of this experiment two graphs were plotted.

For Examiner's Use

(i)	Which reagent is	odine or zinc	was in excess	? Give a reasor	for your choice
-----	------------------	---------------	---------------	-----------------	-----------------

[1]

(ii) Describe how the shape of graph 1 would change if 100cm³ of 0.05 mol/dm³ iodine had been used.

[2]

(iii) On graph 2, sketch the shape if the reaction had been carried out using 100 cm³ of 0.1 mol/dm³ iodine at 35 °C instead of at 25 °C. [2]

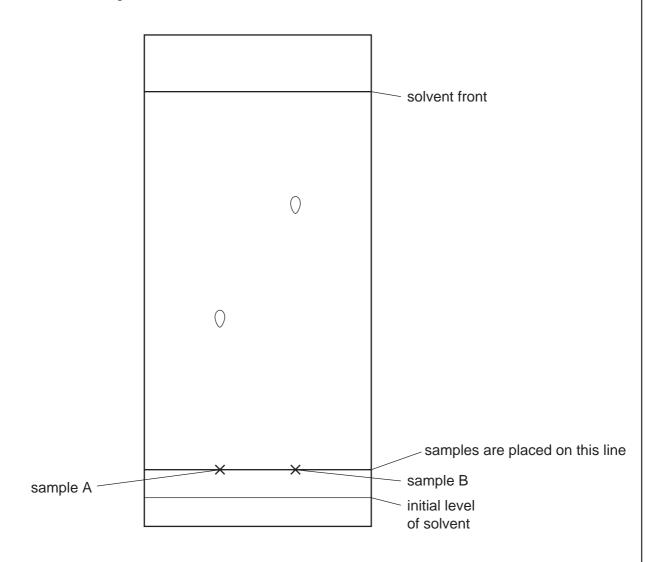
		n Korean chemist has discovered a cure for smelly socks. Small particles of silver are d to a polymer, poly(propene), and this is woven into the socks.	For Examiner's Use
(a)	(i)	Give the structural formula of the monomer.	
	(ii)	[1] Draw the structural formula of the polymer.	
	<i>,</i> ,,,,,	[2]	
	(iii)	Suggest which one, monomer or polymer, will react with aqueous bromine and why?	
		[2]	
(b)		show that the polymer contains silver the following test was carried out. e polymer fibres were chopped into small pieces and warmed with nitric acid. The	
	silv	rer atoms were oxidised to silver(I) ions. The mixture was filtered. Aqueous sodium oride was added to the filtrate and a white precipitate formed.	
	(i)	Why was the mixture filtered?	
		[1]	
	(ii)	Explain why the change of silver atoms to silver ions is oxidation.	
		[1]	
	(iii)	Give the name of the white precipitate.	
		[1]	

(c)	to b	he unpleasant smell is caused by carboxylic acids. Bacteria cause the fats on the skin be hydrolysed to these acids. Silver kills the bacteria and prevents the hydrolysis of e fats.			
	(i)	Fats are esters. Give the name and structural formula of an ester.			
		name	[1]		
		structural formula			
			[1]		
	(ii)	Complete the word equation. Ester + water → carboxylic acid +	[1]		
(d)	Pro	panoic acid is a weak acid.			
	(i)	The following equation represents its reaction with ammonia.			
		$CH_3-CH_2-COOH + NH_3 \longrightarrow CH_3-CH_2-COO^- + NH_4^+$			
		Explain why propanoic acid behaves as an acid and ammonia as a base.			
			[3]		
	(ii)	Explain the expression weak acid.			
			[1]		

© UCLES 2005

4

of these	rlsbad caverns in New Mexico are very large underground caves. Although the walls caves are coated with gypsum (hydrated calcium sulphate), the caves have been in limestone.
(a) It is	believed that the caves were formed by sulphuric acid reacting with the limestone.
(i)	Complete the word equation.
	calcium + sulphuric calcium + + + carbonate acid sulphate + [1]
(ii)	Describe how you could test the water entering the cave to show that it contained sulphate ions.
	test
	result [2]
(iii)	How could you show that the water entering the cave has a high concentration of hydrogen ions?
	[1]
. , .	drogen sulphide gas which was escaping from nearby petroleum deposits was being dised to sulphuric acid.
(i)	Complete the equation for this reaction forming sulphuric acid.
	$H_2S + O_2 \longrightarrow$ [2]
(ii)	Explain why all the hydrogen sulphide should be removed from the petroleum before it is used as a fuel.
	[1]


	(iii)	Draw a diagram to show the arrangement of the valency electrons in one molecule of the covalent compound hydrogen sulphide. Use o to represent an electron from a sulphur atom. Use x to represent an electron from a hydrogen atom.	For Examiner's Use
		[2]	
(c)		phuric acid is manufactured by the Contact Process. Sulphur dioxide is oxidised to ohur trioxide by oxygen.	
		$2SO_2 + O_2 \longrightarrow 2SO_3$	
	(i)	Name the catalyst used in this reaction.	
		[1]	
	(ii)	What temperature is used for this reaction?	
		[1]	
	(iii)	Describe how sulphur trioxide is changed into sulphuric acid.	
		[2]	
(d)		osum is hydrated calcium sulphate, CaSO ₄ .xH ₂ O. It contains 20.9% water by mass. culate x.	
	M _r :	CaSO ₄ , 136; H ₂ O, 18.	
	79.	1 g of CaSO ₄ =moles	
	20.	9 g of H ₂ O =moles	
	x =	[3]	

© UCLES 2005

5 Enzymes are biological catalysts. They are used both in research laboratories and in industry.

For Examiner's Use

(a) Enzymes called proteases can hydrolyse proteins to amino acids. The amino acids can be separated and identified by chromatography. The diagram below shows a typical chromatogram.

(i) The R_f value of a sample = <u>distance travelled by sample</u> distance travelled by solvent front

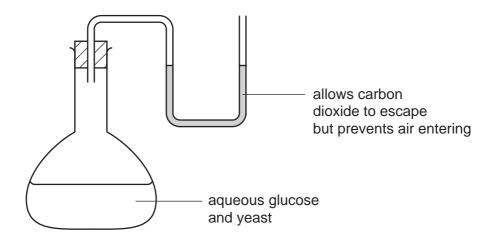
Some R_f values for amino acids are:

glutamic acid = 0.4 glycine = 0.5 alanine = 0.7 leucine = 0.9

Identify the two amino acids on the chromatogram.

A is ______ B is _____ [2]

(ii) Explain why the chromatogram must be exposed to a locating agent before $R_{\rm f}$ values can be measured.


[1]

	(iii)	Measuring $R_{\rm f}$ values is one way of identifying amino acids on a chromatogra Suggest another.	am.	For Examiner's Use
			[1]	
	(iv)	The synthetic polymer, nylon, has the same linkage as proteins. Draw the structuformula of nylon.	ural	
			[3]	
(b)		cymes called carbohydrases can hydrolyse complex carbohydrates to simple sug		
		bohydrate.	,10X	
			[2]	

© UCLES 2005

(c) Fermentation can be carried out in the apparatus drawn below. After a few days the reaction stops. It has produced a 12% aqueous solution of ethanol.

For Examiner's Use

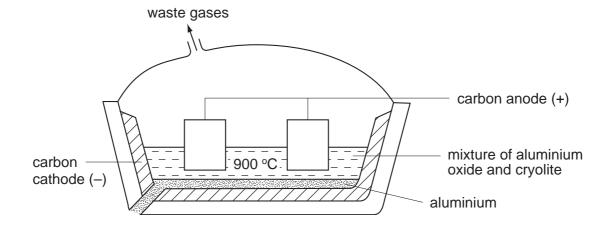
(i) Complete the equation.

$C_6H_{12}O_6$		+	
glucose	ethanol	carbon dioxide	[2]

- (ii) Zymase catalyses the anaerobic respiration of glucose. Define the term respiration.

 [2]
- (iii) Suggest a reason why the reaction stops after a few days.

 [1]
- (iv) Why is it essential that there is no oxygen in the flask?
 - [1]
- (v) What technique is used to concentrate the aqueous ethanol?


 [1]

6 The position of aluminium in the reactivity series of metals is shown below.

For Examiner's Use

magnesium aluminium zinc copper

(a) Aluminium is extracted by the electrolysis of its molten oxide.

(i) Nam	ie the	maın	ore	ΟŤ	aluminium	
---------	--------	------	-----	----	-----------	--

·	C 4 T	
	111	ı
		1
		•

(ii) Why does the molten electrolyte contain cryolite?

(iii) Oxygen is produced at the positive electrode (anode). Name another gas which is given off at this electrode.

(b) Aluminium reacts very slowly with aqueous copper(II) sulphate.

$$2Al(s) + 3CuSO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3Cu(s)$$

(i) Which of the two metals has the greater tendency to form ions?

[1]

(ii) Describe what you would see when this reaction occurs.

(iii) Explain why aluminium reacts so slowly.

(c)	Complete	the	following	table	by	writing	"reaction"	or	"no	reaction"	in	the	spaces
	provided.												

oxide	type of oxide	reaction with acid	reaction with alkali
magnesium	basic		
aluminium	amphoteric		

-	

(d)	Predict the eq	uations fo	r the decom	position of th	e following	aluminium	compounds

(i)	A <i>l</i> (OH) ₃ →	-	+	[2	<u>']</u>
-----	--------------------------------	---	---	----	-----------

(ii)	aluminium nitrate	 +	+	

BLANK PAGE

BLANK PAGE

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	4 H elium	o 0 5	o Luci	you you	₩ Φ δ	D	
		2 Heli	20 Neon 10	40 Ar Argon	36	131 Xe Xenon 54	Rn Radon 86	
	=		19 Fluorine	35.5 C1	80 Br Bromine 35	127 I lodine 53	At Astatine 85	
	5		16 Oxygen 8	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84	-
	>		14 N itrogen 7	31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth	_
	≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82	
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	In Indium	204 T 1 Thallium 81	
3					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
Group					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
Group					59 Ni Nickel	106 Pd Palladium 46	195 Pt Platinum 78	
3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.					59 Co Cobalt 27	Rhodium	192 Ir Irdium	
5		Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76	
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	Niobium 41	181 Ta Tantalum	
					48 Ti Titanium 22	2 Zirconium	178 Hf Hafnium 72	
					Scandium	89 ×	139 La Lanthanum 57 *	Ac Actinium
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88
	_		7 L.i. Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87

175 Lu Lutetium 71	Lr Lawrencium 103
173 Yb Ytterbium 70	Nobelium 102
169 Tm Thulium	Md Mendelevium 101
167 Er Erbium 68	Fm Fermium 100
165 Ho Holmium 67	Einsteinium 99
162 Dy Dysprosium 66	Cf Californium 98
159 Tb Terbium 65	BK Berkelium 97
Gd Gadolinium 64	Cm Curium 96
152 Eu Europium 63	Am Americium 95
Sm Samarium 62	Pu Plutonium 94
Pm Promethium 61	Np Neptunium 93
144 Nd Neodymium 60	238 U Uranium 92
Pr Praseodymium 59	Pa Protactinium 91
140 Ce Cerium	232 Th Thorium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

в 🗙

Key

*58-71 Lanthanoid series 90-103 Actinoid series