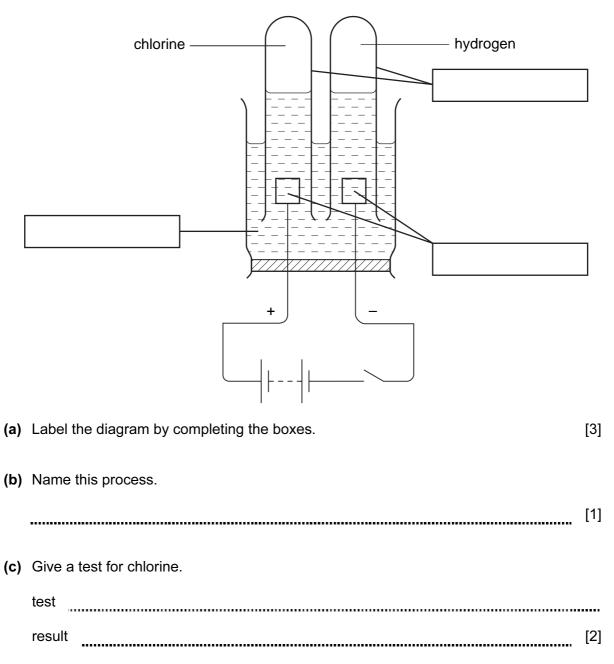
Centre Number	Candidate Number	Name In Iso
-		Name Name BE INTERNATIONAL EXAMINATIONS ertificate of Secondary Education
CHEMISTRY	,	0620/06
Paper 6 Alte	rnative to Practical	May/June 2006
	wer on the Question Pap aterials are required.	Der.
	ICTIONS FIRST	

Write your name, Centre number and candidate number at the top of this page. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
Total		

This document consists of 14 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE

1 The diagram shows the effect of passing electricity through concentrated hydrochloric acid.

3

For Examiner's Use

2

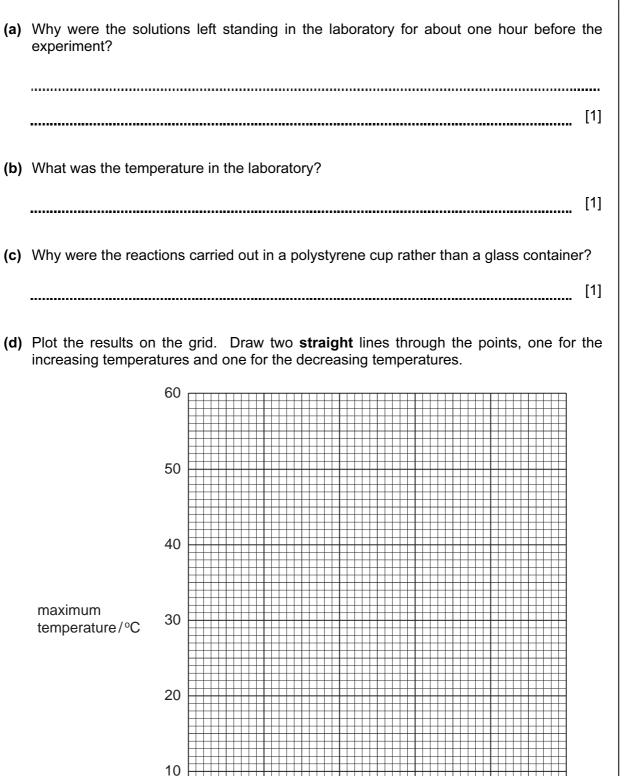
For Examiner's Use

3 A student carried out an experiment to measure the temperature changes during the reaction of two solutions X and Y.

The instructions were as follows.

Leave the solutions to stand in the laboratory for one hour.

Pour 25 cm^3 of solution **X** into a polystyrene cup and record its temperature.


Add 10 cm^3 of solution **Y** and record the maximum temperature reached.

Repeat the experiment using 25 cm³ of solution **X** with different volumes of solution **Y**.

The results are shown in the table. Use the thermometer diagrams to record the maximum temperatures reached.

volume of solution Y added to 25 cm ³ solution X /cm ³	thermometer diagram	maximum temperature/°C
0	20 20	
10	40 - 35 - 30	
20	50 - 45 40	
30	55 	
40	45 40	
50	40	

[2]

[3]

50

20

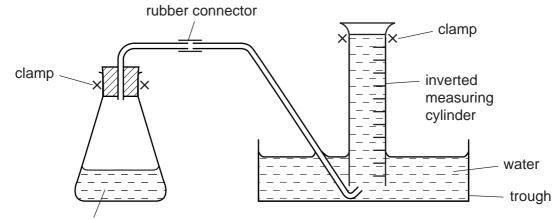
30

volume of solution Y added/cm³

40

10

0


0

For Examiner's Use

		6			For Fxaminer's
(e)	(i)	Read from your graph the maximum temperature that could reaction.	be reached in	the	Use
				[1]	
	(ii)	Indicate on the graph where the two solutions completely react	with each other.	[1]	
	(iii)	What volume of solution Y exactly reacts with the 25 cm ³ of solution	ution X?		
				[1]	
(f)	Circ	rcle which word correctly describes this chemical reaction.			
		endothermic reversible exc	othermic	[1]	

4 A student investigates the speed of reaction when aqueous hydrogen peroxide breaks down using a catalyst, manganese(IV) oxide. The catalyst remains unchanged at the end of the reaction.

The apparatus was set up as shown in the diagram.

20 cm³ hydrogen peroxide solution

Experiment 1

By using a measuring cylinder, 20 cm^3 of hydrogen peroxide solution was poured into a conical flask. One spatula measure of manganese(IV) oxide was added to the flask, the bung was quickly put in the flask and the timer started.

The volume of gas collected in the measuring cylinder at 10 seconds, 20 seconds and 30 seconds was measured.

The results are shown in the table below.

time/s	0	10	20	30
measuring cylinder diagram	10 20 30 40 50	10 20 30 40 50	10 20 30 40 50	10 20 30 40 50
volume of gas in measuring cylinder/cm ³	0	19	39	51

Experiment 2

By using a measuring cylinder 15 cm^3 of hydrogen peroxide was poured into the conical flask. The instructions were repeated exactly as given for Experiment 1, but 5 cm^3 of distilled water was also added to the flask.

Use the diagrams to record your results in the table below.

time/s	0	10	20	30
measuring cylinder diagram	10 20 30 40 50	10 20 30 40 50	10 20 30 40 50	10 20 30 40 50
volume of gas in measuring cylinder/cm ³				

[2]

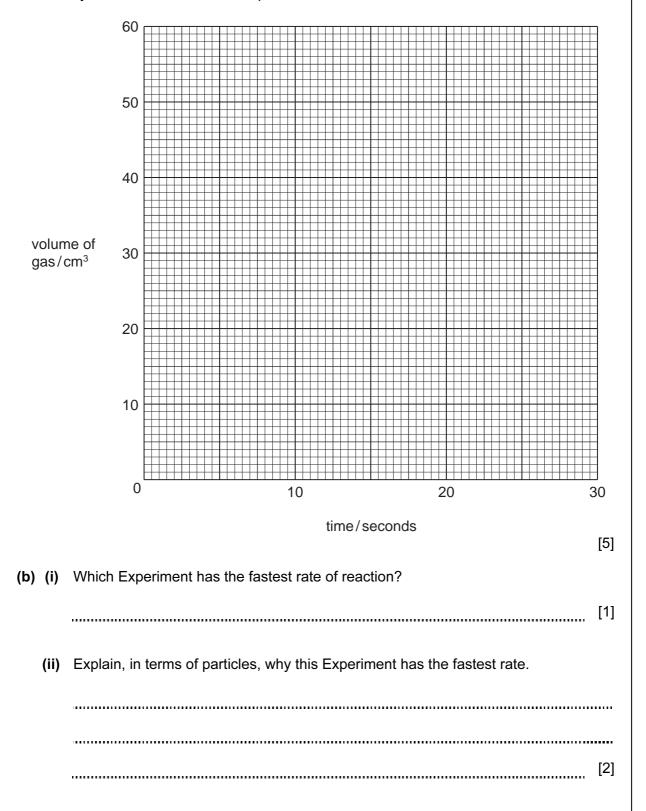
Experiment 3

Experiment 1 was repeated using 10 cm³ of hydrogen peroxide and 10 cm³ of distilled water. Record your results in the table.

time/s	0	10	20	30
measuring cylinder diagram	10	10 20 30	10	10
volume of gas in measuring cylinder/cm ³				

[2]

For Examiner's Use


Experiment 4

Experiment 1 was repeated using 5 cm^3 of hydrogen peroxide and 15 cm^3 of distilled water. Record your results in the table.

time/s	0	10	20	30
measuring cylinder diagram	10	10	10	10
volume of gas in measuring cylinder/cm ³				

[2]

- For Examiner's Use
- (a) Plot your results on the grid for each Experiment. Draw 4 graphs and label each clearly with the number of the Experiment.

(c) (i) State two sources of error in the Experiments. 1 2 [2] (ii) Suggest two improvements to reduce the sources of error in the Experiments. 1 2 [2] (d) State a practical method you could use to prove that manganese(IV) oxide was a catalyst in Experiment 1. [2]

A mixture of two compounds, B and C, was tested.
 Compound B was a water-soluble zinc salt and compound C was insoluble.
 The tests and some of the observations are in the following table.
 Complete the observations in the table.

tests	observations
(a) One measure of the mixture was heated gently then strongly.	condensation at the top of the tube
The gas released was tested with cobalt chloride paper.	paper turned pink
The rest of the mixture was added to about 25 cm ³ of distilled water in a boiling tube. The contents of the tube were shaken and filtered. The following tests were carried out.	
Tests on the filtrate The solution was divided into 2 cm ³ po	ortions in four test-tubes.
(b) (i) Drops of aqueous sodium hydroxide were added to the first portion of the solution. Excess aqueous sodium	
hydroxide was added.	
	[3]
(ii) Using the second portion test (b)(i) was repeated using aqueous ammonia instead of aqueous sodium hydroxide.	
	[3]
(iii) To the third portion of solution was added hydrochloric acid and	
barium nitrate solution.	white precipitate

		tests	observations	
	(iv	 To the fourth portion of solution was added nitric acid and silver nitrate solution. 	no visible reaction	
	Те	ests on the residue		
	int hy an	ome of the residue was placed to a test-tube. Dilute rdrochloric acid was added ad the gas given off was tested th limewater.	rapid effervescence limewater turned milky	
(d)	What does t	est (a) indicate?		[1]
(e)	What conclu	isions can you draw about comp	oound B ?	
				[2]
(f)	What does t	est (c) indicate?		
				 [2]

6 The diagram shows two bottles of liquid oven cleaner.

The oven cleaners contain sodium hydroxide solution. Plan an investigation to show which oven cleaner contains the highest concentration of sodium hydroxide.

 [6]

BLANK PAGE

BLANK PAGE

16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.