CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CHEMISTRY

0620/03
Paper 3 (Extended)
May/June 2007
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

1 A major source of energy is the combustion of fossil fuels.
(a) (i) Name a solid fossil fuel.
\qquad
(ii) Name a gaseous fossil fuel.
\qquad
(b) Petroleum is separated into more useful fractions by fractional distillation.
(i) Name two liquid fuels obtained from petroleum.
\qquad
(ii) Name two other useful products obtained from petroleum that are not used as fuels.
\qquad and
[2]
(iii) Give another mixture of liquids that is separated on an industrial scale by fractional distillation.

2 Complete the following table.

type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example
ionic	positive and negative ions	poor		
macro	atoms of two different elements in a giant molecular	poor		

[Total: 6]

3 There are three methods of preparing salts.
Method \mathbf{A} - use a burette and an indicator.
Method \mathbf{B} - mix two solutions and obtain the salt by precipitation.
Method C - add an excess of base or a metal to a dilute acid and remove the excess by filtration.

For each of the following salt preparations, choose one of the methods A, B or C, name any additional reagent needed and then write or complete the equation.
(i) the soluble salt, zinc sulphate, from the insoluble base, zinc oxide
method
reagent
word equation \qquad
(ii) the soluble salt, potassium chloride, from the soluble base, potassium hydroxide
method
reagent
equation \qquad $+$ \qquad $\rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
(iii) the insoluble salt, lead(II) iodide, from the soluble salt, lead(II) nitrate

$$
\begin{array}{ll}
\text { method } & \text {.. } \\
\text { reagent } & \text {... } \\
\text { equation } \mathrm{Pb}^{2+}+ & \\
\text {.. } \rightarrow \text {... }
\end{array} \text { [4] }
$$

[Total: 10]

4 Use your copy of the periodic table to help you answer these questions.
(a) Predict the formula of each of the following compounds.
(i) barium oxide ... [1]
(ii) boron oxide ... [1]
(b) Give the formula of the following ions.
(i) sulphide ... [1]
(ii) gallium ... [1]
(c) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound nitrogen trichloride.

Use x to represent an electron from a nitrogen atom.
Use o to represent an electron from a chlorine atom.
(d) Potassium and vanadium are elements in Period IV.
(i) State two differences in their physical properties.
\qquad
\qquad
(ii) Give two differences in their chemical properties.
\qquad
\qquad
(e) Fluorine and astatine are halogens. Use your knowledge of the other halogens to predict the following:
(i) The physical state of fluorine at r.t.p.

The physical state of astatine at r.t.p.
(ii) Two similarities in their chemical properties
\qquad
\qquad

5 (a) Titanium is produced by the reduction of its chloride. This is heated with magnesium in an inert atmosphere of argon.

$$
\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}
$$

(i) Explain why it is necessary to use argon rather than air.
\qquad
(ii) Name another metal that would reduce titanium chloride to titanium.
\qquad
(iii) Suggest how you could separate the metal, titanium, from the soluble salt magnesium chloride.
\qquad
\qquad
(b) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathodic protection of large steel structures from rusting.

(i) Define oxidation in terms of electron transfer.
\qquad
(ii) The steel oil rig is the cathode. Name the gas formed at this electrode.
\qquad
(iii) Name the two gases formed at the titanium anode.
\qquad and
(iv) Explain why the oil rig does not rust.
\qquad
\qquad
(v) Another way of protecting steel from corrosion is sacrificial protection.

Give two differences between sacrificial protection and cathodic protection.

6 Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$.
(a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences.

The \qquad dissolves to give a solution of \qquad The \qquad does not dissolve and can be removed by
(b) Complete the labelling of the diagram.

(c) The ions that are involved in the electrolysis are Al^{3+} and O^{2-}.
(i) Write an equation for the reaction at the cathode.
\qquad
(ii) Explain how carbon dioxide is formed at the anode.
\qquad
\qquad
(d) Give an explanation for each of the following.
(i) Aluminium is used extensively in the manufacture of aircraft.
\qquad
(ii) Aluminium is used to make food containers.
\qquad
(iii) Aluminium electricity cables have a steel core.
\qquad

7 Esters, fats and polyesters all contain the ester linkage.
(a) The structural formula of an ester is given below.

Name two chemicals that could be used to make this ester and draw their structural formulae. Show all bonds.
names
and
structural formulae
(b) (i) Draw the structural formula of a polyester such as Terylene.
(ii) Suggest a use for this polymer.
\qquad
(c) Cooking products, fats and vegetable oils, are mixtures of saturated and unsaturated esters.

The degree of unsaturation can be estimated by the following experiment. 4 drops of the oil are dissolved in $5 \mathrm{~cm}^{3}$ of ethanol. Dilute bromine water is added a drop at a time until the brown colour no longer disappears. Enough bromine has been added to the sample to react with all the double bonds.

cooking product	mass of saturated fat in 100 g of product/g	mass of unsaturated fat in 100 g of product/g	number of drops of bromine water
margarine	35	35	5
butter	45	28	4
corn oil	10	84	12
soya oil	15	70	10
lard	38	56	

(i) Complete the one blank space in the table.
(ii) Complete the equation for bromine reacting with a double bond.

(iii) Using saturated fats in the diet is thought to be a major cause of heart disease. Which of the products is the least likely to cause heart disease?
(d) A better way of measuring the degree of unsaturation is to find the iodine number of the unsaturated compound. This is the mass of iodine that reacts with all the double bonds in 100 g of the fat.

Use the following information to calculate the number of double bonds in one molecule of the fat.

Mass of one mole of the fat is 884 g .
One mole of I_{2} reacts with one mole

The iodine number of the fat is 86.2 g .
Complete the following calculation.

100 g of fat reacts with 86.2 g of iodine.
884 g of fat reacts with ... g of iodine.
One mole of fat reacts with \qquad moles of iodine molecules.

Number of double bonds in one molecule of fat is

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

