

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
CHEMISTRY	0620/32

Paper 3 (Extended)

October/November 2009 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

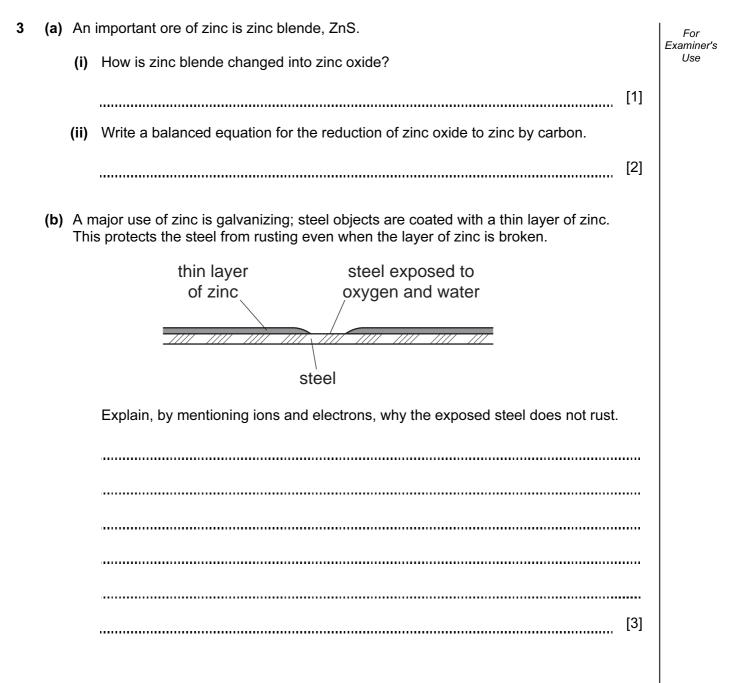
Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part questions.


For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 14 printed pages and 2 blank pages.

1	(a) ⁻	The	major gases in unpolluted air are 79% nitrogen and 20% oxygen.		For Examiner's
		(i)	Name another gaseous element in unpolluted air.		Use
				[1]	
	(ii)	Name two compounds in unpolluted air.		
				[2]	
	(b) ⁻	Two	common pollutants in air are sulfur dioxide and the oxides of nitrogen.		
		(i)	Name another pollutant in air.		
				[1]	
	(ii)	Describe how sulfur dioxide is formed.		
				[2]	
	(i	ii)	How are the oxides of nitrogen formed?		
				[2]	
	(c)	Hov	v is oxygen obtained from air?		
				[2]	
			[Total:	10]	

.,	omplete the ta	ıble.			Examin Use
t	ype of oxide	pH of solution of oxide	example		
a	cidic				
ba	asic			-	
ne	eutral				
				[6]	
b) (i)	Explain the	term amphoteric.			
				[1]	
(ii)		you distinguish between an ac c acid and aqueous sodium hy			
(ii)				oteric oxide using	
(ii)		c acid and aqueous sodium hy		oteric oxide using	

voltmeter copper electrode zinc electrode zinc sulfate(aq) copper(II) sulfate(aq) porous pot - stops solutions from mixing (i) Give an explanation for the following in terms of atoms and ions. observation at zinc electrode - the electrode becomes smaller explanation [1] observation at copper electrode - the electrode becomes bigger explanation [1] (ii) When a current flows, charged particles move around the circuit. What type of particle moves through the electrolytes? [1] Which particle moves through the wires and the voltmeter? [1] [Total: 10]

cell in 1831.

[Turn over

(c) Zinc electrodes have been used in cells for many years, one of the first was the Daniel Examiner's

For

Use

The distinctive smell of the seaside was thought to be caused by ozone, O₃. Ozone is a form of the element oxygen. Examiner's (a) A mixture of oxygen and ozone is formed by passing electric sparks through oxygen. $3O_2 \rightleftharpoons 2O_3$ Suggest a technique that might separate this mixture. Explain why this method separates the two forms of oxygen. technique explanation _____ [2] (b) Ozone is an oxidant. It can oxidise an iodide to iodine. $2I^{-} + O_3 + 2H^{+} \rightarrow I_2 + O_2 + H_2O$ What would you see when ozone is bubbled through aqueous acidified potassium (i) iodide? [2] (ii) Explain in terms of electron transfer why the change from iodide ions to iodine molecules is oxidation. [1] (iii) Explain, using your answer to **b**(ii), why ozone is the oxidant in this reaction. [1]

For

Use

(c)		s now known that the smell of the seaside is due to the chemical dimethyl sulfide, $I_3)_2S$.	For Examiner's Use
	(i)	Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound. Use x to represent an electron from a carbon atom. Use o to represent an electron from a hydrogen atom. Use • to represent an electron from a sulfur atom.	
	(ii)	[3] Name the three compounds formed when dimethyl sulfide is burnt in excess oxygen.	
		[2] [Total: 11]	

[Turn over

- **5** The first three elements in Group IV are carbon, silicon and germanium. The elements and their compounds have similar properties.
 - (a) The compound, silicon carbide, has a macromolecular structure similar to that of diamond.
 - (i) A major use of silicon carbide is to reinforce aluminium alloys which are used in the construction of spacecraft. Suggest **three** of its physical properties.

[3]

(ii) Draw a diagram to show the arrangement of silicon atoms around one carbon atom in silicon carbide. Label this diagram 1.

Draw a diagram to show the arrangement of carbon atoms around one silicon atom in silicon carbide. Label this diagram 2.

For Examiner's

Use

(b) Germanium(IV) oxide, GeO₂, has the same macromolecular structure as silicon(IV) oxide. Draw the structural formula of germanium(IV) oxide.

[2]

(c)	Germar	ium forms a series of hydrides comparable to the alkanes.		For Examiner's
	(i)	Draw the structural formula of the hydride which contains three germanium atc per molecule.	ms	Use
	(ii)	Predict the products of the complete combustion of this hydride.	[1]	
			[2]	

.....

[Total	· 1	11
լոսնա		· 1

	$2SO_2 + O_2 \rightleftharpoons 2SO_3$
Thi	s is carried out in the presence of a catalyst at 450 $^\circ$ C and 2 atmospheres pressure.
(i)	Sulfur dioxide is made by burning sulfur. Name a source of sulfur.
	[1]
(ii)	Give another use of sulfur dioxide.
	[1]
(iii)	Name the catalyst used.
	[1]
(iv)	If the temperature is decreased to 300 °C, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.
	[1]
(v)	Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?
	[1]

- (b) Sulfuric acid was first made in the Middle East by heating the mineral, green vitriol, FeSO₄.7H₂O. The gases formed were cooled.
- $FeSO_4.7H_2O(s)$ FeSO₄(s) $7H_2O(g)$ \rightarrow + green crystals yellow powder $2FeSO_4(s) \rightarrow Fe2O_3(s) + SO_2(g) + SO_3(g)$ On cooling $SO_3 + H_2O \rightarrow H_2SO_4$ sulfuric acid SO_2 + $H_2O \rightarrow H_2SO_3$ sulfurous acid (i) How could you show that the first reaction is reversible? [2] (ii) Sulfurous acid is a reductant. What would you see when acidified potassium manganate(VII) is added to a solution containing this acid? [2] (iii) Suggest an explanation why sulfurous acid in contact with air changes into sulfuric acid.[1] (c) 12.16 g of anhydrous iron(II) sulfate was heated. Calculate the mass of iron(III) oxide formed and the volume of gases, at r.t.p., formed. $2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ mass of one mole of $FeSO_4 = 152 g$ number of moles of FeSO₄ used = number of moles of Fe_2O_3 formed = = _____g mass of one mole of Fe_2O_3 mass of iron(III) oxide formed = _____g total number of moles of gases formed = = _____dm³ total volume of gases formed [6]

[Total: 16]

For Examiner's

Use

0620/32/O/N/09

7

For

Examiner's Use

(c)		e fermentation of biomass by bacteria produces a mixture of products which include butanol, propanol, hydrogen and propanoic acid.
	(i)	Draw the structural formula of propanol and of propanoic acid. Show all the bonds.
		propanol
		propanoic acid
		[2]
	(ii)	Why is it important to develop these fuels, such as biobutanol, as alternatives to petroleum?
		[1]
(d)		w could you show that butanol made from petroleum and biobutanol are the same emical?
		[1]
		[Total: 13]

For Examiner's Use

BLANK PAGE

BLANK PAGE

	0	4 Helium	20 20 Neon 10 Ar Gon 18 Ar Gon	84 Krypton 36	131 Xenon 54	Rn Radon 86		175 Lu tetium 71	Lr Lawrencium 103	
	N		19 Fluorine 35.5 C1 Chorine	80 Bromine 35	127 I Iodine 53	At Astatine 85		173 Yb ^{Ytterbium}	Nobelium 102	
	N		16 8 Oxygen 8 32 32 16 Suffur	79 Selenium 34	128 Te Tellurium 52	Polonium 84	-	169 Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth	-	167 Er Erbium 68	Fermium 100	
	≥		6 Carbon 6 Carbon 6 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		165 Ho Holmium 67	Esinsteinium 99	
	=		11 5 BBoron 5 27 Auminium 13	70 Ga Galitum 31	115 In Indium 49	204 T 1 B1	-	162 Dy Dysprosium 66	Cf Californium 98	
cille				65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury} 80		159 Tb ^{Terbium}	BK ^{Berkelium} 97	
Group date of the clements				64 Cu Copper	108 Ag Silver	197 Au Gold	-	157 Gd Gadolinium 64	ocurium B6	
Group				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium 95	
Gro	G	Ð			59 CO ²⁷	103 Rh Rhodium 45	192 Ir Iridium		150 Samarium 62	
		Hydrogen		56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	
				55 Mn ^{Manganese} 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 U ^{Uranium} 92	
				52 Cr Chromium 24	96 MO Molybdenum 42	184 V 74		141 Pr Praseodymium 59	Pa Protactinium 91	
				51 Vanadium 23	93 Nb Niobium	181 Ta Tantalum 73		140 Ce ^{Cerium}	232 Tho 90	
				48 Ti ^{Titanium} 22	91 Zr Zirconium 40	178 Hf Hathium 72			nic mass bol nic) number	
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89 †	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Beryllum 4 24 Magnesium 12	40 Calcium 20	88 Sr 38	137 Ba Barium 56	226 Rad 88	*58-71 Lanthanoid series 190-103 Actinoid series	ت × ۳	
				39 K Potassium	85 Rb Rubidium	133 CS Caesium	Francium	ыĽ	م	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.