MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	43

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) $200 \div 10 \times 3$ oe $200 \div 10 \times 2$ oe (b) 65 (c) 46 (d) $0.6(0)$	M1 M1 2 3 3	M1 for $\frac{39}{60} \times 100$ oe 35 is M0 M2 for $36.80 \div 0.8$ oe or M1 for $80 \%=36.80$ oe M2 for $5(x+12)+2 x=64.2$ oe or $(64.2-5 \times 12) \div 7$ or $5 x+2(x-12)=64.2$ oe or $(64.2+2 \times 12) \div 7$ or M1 for $y=x+12$ and $5 y+2 x=64.2$ or $y=x-12$ and $5 x+2 y=64.2$ After M0, SC1 for $k(x \pm 12)$ seen
2	(a) $(\cos Q=) \frac{4^{2}+4.5^{2}-7^{2}}{2 \times 4 \times 4.5}$ o.e. 110.74.... (b) $(R S=) \frac{7 \sin 40}{\sin 85}$ $4.516 \ldots$ (c) Angle $R=55^{\circ}$ $\begin{aligned} & 0.5 \times 7 \times 4.52 \times \sin (\text { their } 55) \text { o.e. } \\ & 0.5 \times 4 \times 4.5 \times \sin 110.7 \text { o.e. } \\ & \text { Triangle } P R S+\text { Triangle } P Q R \\ & 21.4(21.36-21.42) \end{aligned}$	M2 E2 M2 E1 B1 M1 M1 M1 A1	M1 for $7^{2}=4^{2}+4.5^{2}-2 \times 4 \times 4.5 \times \cos (Q)$ If $\mathbf{E 0}$ then $\mathbf{A 1}$ for - 0.354(1...) M1 for $\frac{R S}{\sin 40}=\frac{7}{\sin 85}$ o.e. Can be implied by second M (May be seen on diagram) $(12.95-13.0) \quad$ their 55 is $(180-40-85)$ $(8.418-8.42) \quad(s=7.75)$ Dependent on M1, M1 www 5

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	43

\begin{tabular}{|c|c|c|c|}
\hline 3 \& \begin{tabular}{l}
(a) \(5 x^{2}-x\) or \(x(5 x-1)\) \\
(b) \(27 x^{9}\) \\
(c) (i) \(7 x^{7}\left(1+2 x^{7}\right)\) \\
(ii) \((y+w)(x+2 a)\) \\
(iii) \((2 x+7)(2 x-7)\) \\
(d) \(\frac{-5 \pm \sqrt{5^{2}-4(2)(1)}}{2(2)}\) oe \\
-2.28
-0.22
\end{tabular} \& 2
2
2
2
2
1
2

2
1

1 \& | M1 for $x^{2}+3 x$ or $4 x^{2}-4 x$ correct |
| :--- |
| B1 for 27 or for x^{9} |
| M1 for any correct partially factorised expression or $7 x^{7}(1+\ldots)$ |
| M1 for $x(y+w)+2 a(y+w)$ or $y(x+2 a)+w(x+2 a)$ |
| In square root $\mathbf{B 1}$ for $5^{2}-4(2)(1)$ or better (17) |
| If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ |
| B1 for $p=-5$ and $r=2(2)$ |
| SC1 for -2.3 or -2.281 to -2.280 and |
| -0.2 or -0.220 to -0.219 |

\hline 4 \& | (a) (i) $\binom{25}{43}$ |
| :--- |
| (ii) (16) |
| (iii) $\frac{1}{-2}\left(\begin{array}{rr}5 & -3 \\ -4 & 2\end{array}\right)$ isw or $\left(\begin{array}{rr}-\frac{5}{2} & \frac{3}{2} \\ 2 & -1\end{array}\right)$ |
| (b) Reflection only x-axis oe |
| (c) $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ | \& 2

2

1
1
1

2 \& | If 0,0 then $\mathbf{S C 1}$ for 25 and 43 seen |
| :--- |
| B1 for 16 without brackets |
| B1 for determinant $=-2$ |
| or B1 for $k\left(\begin{array}{rr}5 & -3 \\ -4 & 2\end{array}\right)$ |
| If more than one transformation given - no marks available independent |
| B1 for one correct column |

\hline
\end{tabular}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	43

\begin{tabular}{|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
(a) (i) Accurate perpendicular bisector, with 2 pairs of arcs, of \(C D\). \\
(ii) Accurate angle bisector, with two pairs of arcs, of angle \(A\). \\
(b) SHOP written in correct region \\
(c) (i) Arc, centre \(B\), radius 5 cm , reaching across \(A B C D\). \\
(ii) Area outside their arc centre \(B\) and outside SHOP shaded
\end{tabular} \& 2
2
S1
1
1
1 ft \& \begin{tabular}{l}
SC1 if accurate without arcs. \\
SC1 if accurate without arcs. \\
Dependent on at least SC1 in (i) and (ii) and intersection \\
Allow good freehand \\
dep on S1
\end{tabular} \\
\hline 6 \& \begin{tabular}{l}
(a) (i) 33 \\
(ii) \(\frac{243}{3125}(0.07776)\) \\
(b) (i) \(\frac{2}{5}, \frac{3}{4}, \frac{1}{8}, \frac{7}{8}\) \\
(ii) \(\frac{1}{20}(0.05) \quad\) cao \\
(iii) \(\frac{1}{5}(0.2) \quad \mathrm{ft}\)
\end{tabular} \& 1
2

3
2

2 ft \& | Accept fraction, \%, dec equivalents (3sf or better) throughout but not ratio or words i.s.w. incorrect cancelling/conversion to other forms |
| :--- |
| Pen -1 once for 2 sf answers |
| Accept 0.0778 . M1 for $\left(\frac{3}{5}\right)^{5}$ oe |
| B1 for $\frac{2}{5}$ and $\frac{3}{4} \quad$ B1 for $\frac{1}{8} \quad$ B1 for $\frac{7}{8}$ M1 for their $\frac{2}{5} \times$ their $\frac{1}{8}$ $\mathrm{ft} \frac{3}{20}+$ their (b)(ii) or M1 for $\frac{3}{5} \times \frac{1}{4}$ |

\hline 7 \& | (a) -5.4 |
| :--- |
| 3.7 |
| (b) 8 points correctly plotted ft |
| Smooth cubic curve through all 8 points |
| (c) $-2,-4,4$ |
| (d) 7 points correctly plotted $\mathbf{f t}$ Two separate smooth branches of rectangular hyperbola |
| (e) (i) $-2.9 \leqslant x \leqslant-2.8$ $2.05 \leqslant x \leqslant 2.15$ |
| (ii) $a=10$ $b=-40$ | \& 1

1
P3
C1

2
P2
C1

1
1
1

1 \& | P3ft their table. |
| :--- |
| P2ft for 6 or 7 points. P1ft for 4 or 5 points Only ft points if shape not affected. |
| B1 for 2 correct |
| P2ft P1ft for 5 or 6 points |
| Must pass through all 7 points, only ft if shape not affected and no contact with either axis. |
| Not with y coordinates |

\hline
\end{tabular}

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	43

\begin{tabular}{|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
(a) (i) \(396(395.6-396)\) \\
(ii) \(3.13(3.125-3.128 \ldots\)...) ft \\
(iii) \(144(144-144.4) \mathrm{ft}\) \\
(b) (i) 311 (310.8-311.1) \\
(ii) 3.50 (3.496 to 3.50\() \mathrm{ft}\)
\end{tabular} \& 2 ft
2 ft
5

2 ft \& | M1 for $\frac{2}{3} \times \pi \times 3^{3}$ and M1 (independent) for $\pi \times 3^{2} \times 12$, |
| :--- |
| M1 (dependent on M2) for adding |
| 126π implies M3 |
| ft their $\mathbf{(i)} \times 7.9 \div 1000$. |
| M1 for $\times 7.9$ soi by figs 313 or $3125-3128$.. |
| ft $15 \times 6 \times 6$ - their (a)(i) |
| M1 for $6 \times 6 \times 15$ oe |
| M1 for $2 \times \pi \times 3^{2}$ and M1 (independent) for $\pi \times 6 \times 12$ and M1 for $\pi \times 3^{2}$, |
| M1 (dependent on M3) for adding. |
| (99π implies M4) |
| ft their $(\mathbf{b})(\mathbf{i}) \times 0.01125$ |
| M1 for their (b)(i) $\div 8$ and \times figs 9 |
| implied by figs 3496 to 350 |

\hline 9 \& | (a) (i) $\binom{9}{5}$ |
| :--- |
| (ii) $\binom{4}{7}$ |
| (iii) $\overrightarrow{B A}$ or $-\overrightarrow{A B}$ |
| (iv) $10.3(10.29-10.30)$ |
| (b) (i) 2 u |
| (ii) $\frac{1}{2}(\mathbf{t}-\mathbf{u})$ oe |
| (iii) $\frac{3}{2} \mathbf{u}+\frac{1}{2} \mathbf{t}$ oe ft | \& 1

1
1
2
1
2

2 ft \& | If $0, \mathbf{S C 1}$ for $\overrightarrow{C B}=\binom{5}{-2}$ seen |
| :--- |
| $B A$ not indicated as a vector is not enough. |
| M1 for $(\text { their } 9)^{2}+(\text { their } 5)^{2}$ |
| M1 for $\frac{1}{2}$ (their $\overrightarrow{B A}+\overrightarrow{A D}+\overrightarrow{D C}$) or equivalent correct route for $\overrightarrow{B M}$, along obtainable vectors in terms of \mathbf{t} and \mathbf{u} |
| or M1 for correct unsimplified answer |
| ft their (i) + their (ii) simplified |
| or $\mathbf{t}+\mathbf{u}-$ their (b)(ii) simplified |
| M1 for correct (or $\mathbf{f t}$) unsimplified (i) + (ii) |
| or $\mathbf{t}+\mathbf{u}$ - their (b)(ii) |

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0580	43

\begin{tabular}{|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(a) \(7,8,8,10,11,16\) \\
and \(8,8,8,10,10,16\) \\
(b) (i)
\[
\begin{aligned}
\& (30 \times 65+35 \times 85+40 \times 95+ \\
\& 40 \times 110+15 \times 135) \div 160
\end{aligned}
\] \\
\(94.7 \quad(94.68-94.69)\) \\
(ii) Heights of \(4,2,0.5\) with correct interval widths
\end{tabular} \& 5

4
4

4 \& | Mark answer spaces only or clearly indicated lists. Allow numbers in any order but must be lists of 6 integers |
| :--- |
| B4 for either correct list If not B4 then |
| B1 for a series with mode 8 and B1 for a series with median 9 and B1 for a series with sum 60 |
| M1 for mid-values soi (allow 1 error/omission) and M1 for use of $\sum f x$ with x in correct interval including both boundaries allow one further error/omission and M1 (dependent on second M) for $\div 160$ www 4 |
| B3 for 2 correct or B2 for 1 correct or B1 for all three freq. densities correct but no/incorrect graph |

\hline 11 \& | (a) $30 \quad 42$ |
| :--- |
| $42 \quad 56$ |
| $71 \quad 97$ |
| (b) (i) 2550 |
| (ii) 30 |
| (c) $(n+1)(n+2)$ oe final ans |
| (d) (i) $2 n^{2}+p n+1=t$ |
| Uses a value of n up to 6 and a matching t from the table |
| e.g. puts $n=3$ and $t=31$ |
| $2 \times 3^{2}+3 p+1=31$ |
| OR |
| Use $p=4$ to get $2 n^{2}+4 n+1=31$ and simplifies to 3 term eqn M1 |
| OR both |
| $2 \times 9+4 \times 3+1(=31)$ |
| with one part evaluated |
| OR |
| $n(n+1)+(n+1)(n+2)-1$ |
| or better |
| M1 |
| (ii) 241 |
| (iii) 12 |
| (e) $L=A+D-1 \quad$ oe | \& 4

1
1
1
1
2
1
1
1
1

1 \& | B3 for 2 correct rows |
| :--- |
| or B2 for 1 correct row or B1 for any term in column 5 correct |
| Correct solution shown with 1 intermediate step to $p=4 \mathbf{E} 1$ |
| Solve correctly to get $n=3 \mathbf{E} 1$ |
| Conclusion e.g. $31=31 \quad$ E1 |
| Correct simplification to $2 n^{2}+4 n+1$ E1 |
| M1 for $2 n^{2}+4 n+1=337$ |
| and M1 for $(n-12)(n+14)$ or correct expression for n using formula |

\hline
\end{tabular}

