MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

\begin{tabular}{|c|c|c|c|}
\hline Qu. \& Answers \& Mark \& Part Marks

\hline 1 (a)
(b)

(c) \& \begin{tabular}{l}
(i) 25

(ii) 15.5 (15.46 to 15.47)

(iii) 0.05 oe

8812.50 final answer www 3

(i) $2^{2} \times 3 \times 5$

(ii) 12

(iii) 240

 \&

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

2

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$

 \&

B1 for $1 / 100$ or 0.01 seen

Condone 8812.5

M2 for $7500 \times 5 \times 0.035+7500$ oe (implied by final answers $8810,8812,8813$ or $8812.5(0)$ seen)

or B2 for 1312.5 as final answer or M1 for $7500 \times 5 \times 0.035$ oe (implied by final answers $1310,1312,1313$)

Allow $2 \times 2 \times 3 \times 5$

M1 for any correct product of 3 factors $=60$ seen or correct factor ladder or correct tree (condone 1's on tree/ladder)

M1 for $2^{2} \times 3$ or $2 \times 2 \times 3$ oe

M1 for $2^{4} \times 3 \times 5$ or $2 \times 2 \times 2 \times 2 \times 3 \times 5$ oe SC 2 only for both correct answers (ii) (iii) reversed
\end{tabular}

\hline 2 (a) \& \[
3.02(3.023 ···) \quad www 4

\] \& 4 \& | M3 for $\sqrt{2^{2}+1.5^{2}+1.7^{2}}$ oe may be in two steps or $\sqrt{9.11 \text { to } 9.15 \ldots} \quad$ (3.018 to 3.026..) or M2 for $2^{2}+1.5^{2}+1.7^{2}$ oe implied by 9.11 to 9.15.... |
| :--- |
| or M1 for any correct Pythag in 1 of the faces e.g. $2^{2}+1.5^{2}$ |

\hline (b) \& 34.1 to 34.3 cao www 3 \& 3 \& M2 for $\sin =1.7 /$ their $E C$ or $\cos =$ their $E G /$ their $E C$ or $\tan =1.7 /$ their $E G$ or complete long method (M1 for $C E G$ as required angle - accept on diagram if clear)

\hline (c) \& | (i) 2.95 cao |
| :--- |
| (ii) Yes and because their (c)(i) < their (a) | \& \[

$$
\begin{gathered}
1 \\
1 \mathbf{f t}
\end{gathered}
$$
\] \& ft their (a) and their (c)(i), must say yes or no oe and compare the two distances - numerically or by labels

\hline
\end{tabular}

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

\begin{tabular}{|c|c|c|c|}
\hline 3 (a)
(b)

(c) \& \begin{tabular}{l}
(i) 142 to 150

(ii) (0)59 to (0)63

(iii) 148° to 152° drawn

Distance 6.8 to 7.2 cm drawn

(iv) 328 to 332°

(v) 60

www 2

667 (666.6 to 666.7)

www 3
$$
\begin{aligned}
& (\cos =) \frac{1125^{2}+790^{2}-1450^{2}}{2 \times 1125 \times 790} \\
& 96.9(96.87 \text { to } 96.88) \quad \text { www } 4
\end{aligned}
$$

 \&

1
1
1
2

3

M2

A2

 \&

B1 for 7.1 to 7.5 seen

Both marks available from the position of B as lines don't need to be drawn.

M1 for 20^{2} or better seen

B1 for 2.25 (h), 135 (mins), 8100 (sec) and M1 for $1500 \div$ their time in hours (time must be in range 2.09 to 3.25) (could be implied by 697 to 698)

M1 for

$$
1450^{2}=1125^{2}+790^{2}-2 \times 1125 \times 790 \cos Q
$$

A1 for $(\cos =)-0.1197 \ldots$ (which implies M2)
\end{tabular}

\hline 4 (a) \& $$
\begin{aligned}
& 4 \\
& -5.8 \text { or }-5.75 \text { or }-5.7 \\
& -2
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \&

\hline (b) \& | 10 correct plots ft |
| :--- |
| Correct shape curve through 10 points (condone 2 points slightly missed) Two separate branches not crossing y-axis | \& P3ft

C1ft

B1 \& | ft from their values in (a) generous with ($-0.25,12.1$) |
| :--- |
| P2 for 8 or 9 correct plots ft or P1 for 6 or 7 correct plots ft ft their points if shape correct - ignore anything between -0.25 and 0.25 |
| C 1 and B 1 are independent |

\hline (c) \& $$
\begin{aligned}
& -2.5 \text { to }-2.3 \\
& -0.5 \text { to }-0.4 \\
& 2.75 \text { to } 2.9
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\] \&

\hline (d) \& Correct tangent drawn at $x=-2$

$$
-4 \text { to }-2.5
$$ \& \[

$$
\begin{gathered}
\mathrm{T} 1 \\
2
\end{gathered}
$$

\] \& | Allow slight daylight |
| :--- |
| Dep on T1 |
| M1 Rise/Tread attempt Dep on T1 |
| or SC1 for answer in range 2.5 to 4 after T1 |

\hline
\end{tabular}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

5 (a)	2, 3, 4, 5	3	M2 for $1<n \leq 5$ seen (M1 for $1<n$ or $n \leq 5$) Allow $2 \leq n<6$ in M2 or M1 case If $0, B 2$ for 3 correct with no extras or 4 correct with 1 extra.
(b)	(i) $2 x(x+5 y)$ (ii) $3(a-2 b)(a+2 b)$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	B1 for $x(2 x+10 y)$ or $2\left(x^{2}+5 x y\right)$ B2 for $(3 a-6 b)(a+2 b)$ or $(a-2 b)(3 a+6 b)$ or correct answer seen in working or B1 for $3\left(a^{2}-4 b^{2}\right)$ If B0, SC 1 for $a^{2}-b^{2}=(a-2 b)(a+2 b)$
(c)	$\text { (i) } \quad \begin{aligned} & 1 / 2 x(x+17)=84 \text { or } \\ & x(x+17)=2 \times 84 \end{aligned}$	M1	Condone $1 / 2 x \times x+17=84$ but only for M mark No errors or omission of brackets anywhere
	Correct proof of $x^{2}+17 x-168=0$ (ii) $(x-7)(x+24)$	$\begin{gathered} \text { E1 } \\ 2 \end{gathered}$	SC1 for $(x+a)(x+b)$ where a and b are integers and $a+b=17$ or $a b=-168$
	(iii) 7 and -24 ft	1 ft	Correct or ft from their factors if quadratic
(d)	-3 www 3	3	B2 for $15-6=x-4 x$ oe or better M1 for $15-x=2(3-2 x)$ or better or $7 \frac{1}{2}-x / 2=3-2 x$
(e)	$\sqrt{(-5)^{2}-4 \times 2 \times-6}$	B1	$(\sqrt{73})$
	$p=--5 \text { and } r=2 \times 2$	B1	Dependent on $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or $\left(x-\frac{5}{4}\right)^{2}$ B1 $\sqrt{3+\frac{25}{16}} \quad \mathrm{~B} 1$
	3.39, -0.89 final answers	B1B1	SC1 for 3.4 or $3.386 \ldots$ or 3.39 seen and -0.9 or $-0.886 \ldots$ or -0.89 seen

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

7 (a)	87.5 (87.45 to 87.52) www 4	4	M1 for $1 / 2 \times 2.5 \times 9.5$ soi by 11.875 or 71.25 and M2 for $1 / 2 \times 2.5^{2} \times \sin 60 \times 6$ oe (16.23 to 16.24) or M1 for $1 / 2 \times 2.5^{2} \times \sin 60(2.706$..) or 1 trapezium (8.1189..)
(b)	107.9 to 108.0....www3	3	Must see at least 4 figures M2 for $\frac{55}{360} \times \pi \times 15^{2}$ or M1 for $\frac{55}{360}$ seen
(c)	(i) 2.29 (2.291 to 2.293) www 2	2	M1 for $108=15 \pi r$ oe allow 107.9 to $108.0 \ldots$ for their 108
	(ii) 14.8 (14.82 to 14.83) cao www 3	3	M2 for $\sqrt{15^{2}-\text { their } 2.29^{2}}$ (M1 for $h^{2}+$ their $2.29^{2}=15^{2}$)
(d)	70.9 to 71.5 cao www 3	3	$\begin{aligned} & \text { M2 for } \frac{\pi}{3} \text { (their } 2.29^{2} \times \text { their } 14.8-\text { their } 1.145^{2} \\ & \times \text { their } 7.4 \text {) } \quad \text { (not } 15 \text { or } 7.5 \text {) } \\ & \text { or } \frac{7}{8} \times \frac{\pi}{3} \times \text { their } 2.29^{2} \times \text { their } 14.8 \end{aligned}$ or M1 for $1 / 8$ oe e.g. $\frac{7.5^{3}}{15^{3}}$ or $7 / 8$ or $(1 / 2$ their R and $1 / 2$ their h) seen
8 (a)	Correct enlargement	2	B1 for any enlargement of 2 in correct orientation
(b)	(i) Stretch only y - axis oe invariant (factor) 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(ii) $\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$	2 ft	Ft their factor 4 SC 1 for $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right) k \neq 0, \neq 1$ or $\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right) \mathrm{ft}$ their factor 4
(c)	Shear only x-axis oe invariant (factor) 2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	42

9 (a)	(i) 3, 8, 15 in correct positions (ii) 12	2	B1 for 2 correct values in correct positions M2 for $12 \times(12+2)(=168)$ or $12,(12+2)$ or M1 for $n^{2}+2 n=168$ then M1 for $(n+a)(n+b)$ where a and b are integers and $a b=-168$ or $a+b=2$ oe
(b)	(i) $2+3 n$ oe (ii) 2^{n-1} oe	2 2	Allow unsimplified e.g. $5+3(n-1)$ B1 for $3 n$ oe seen B1 for 2^{k} seen
(c)	$a=\frac{1}{2}, b=1 \frac{1}{2} \text { cao }$	6	B1 for 12 or 30 seen but if 30 clearly only from Diagram 4 then $B 0$. M1 for any 1 of $a+b+1=3$ oe $\begin{aligned} & 8 a+4 b+2=12 \text { oe } \\ & 27 a+9 b+3=30 \text { oe } \end{aligned}$ M1 for a $2^{\text {nd }}$ of the above equations M1 (indep) for correctly eliminating a or b from pair of linear equations B1 for one correct value

