MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	43

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (b)	(i) 34.65 (ii) 41.58 (iii) 264 (i) 1000 (ii) 3650	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	M1 for 0.15×277.2 implied by 41.6 or 41.58 seen and not spoiled M2 for $277.2 \div(1+0.05)$ o.e. or M1 for recognition that $105(\%)=277.20$ M1 for $2200 \div(2+4+5) \times 5$ M1 for $2200 \div 44 \times 73$
2 (a)	(i) Image at $(4,-4),(6,-4),(6,-6)$, $(2,-6)$ (ii) Image at $(-4,-4),(-4,-6),(-6,-6)$, $(-6,-2)$ (iii) Reflection $y=-x$	2 $2 \mathbf{f t}$ $1 \mathbf{f t}$ $1 \mathbf{f t}$	SC 1 for reflection in y-axis SC 1 ft if rotated 90° anti-clockwise about $(0,0)$ ft their Z (name of transformation) independent (full details)
(b)	(i) Image at (2, 2), (3, 2), (3, 3), (1, 3) (ii) $\left(\begin{array}{cc}0.5 & 0 \\ 0 & 0.5\end{array}\right)$ cao	2	SC1 for enlargement s.f. 0.5 with correct orientation, different centre or sf -0.5 , centre $(0,0)$ B1 B1 each column
(c)	(i) Image at $(0,4),(2,4),(0,6),(-4,6)$ (ii) $\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)$		SC 1 if 3 vertices correct SC 1 for $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right), k \neq 0$ but can be algebraic or numeric or for $\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	43

3 (a)	$(x+5)^{2}-2 x^{2}=1$ oe	M1	Equiv means equation in the three parts, allowing $(x+5)^{2}$ expanded
	$\left\{\begin{array}{l} (x+5)^{2}=x^{2}+10 x+25 \text { or } \\ x^{2}+5 x+5 x+25 \end{array}\right.$	B1	
	$\begin{aligned} & x^{2}+10 x+25-2 x^{2}=1 \\ & 0=x^{2}-10 x-24 \end{aligned}$	E1	For final line reached without any errors or omissions after any previous line with $(x+5)^{2}$ expanded
(b)	12	3	M2 for $(x-12)(x+2)$ or full correct expression from formula.
			Allow SC1 for $(x+a)(x+b)$ and $a b=-24$ or $a+b=-10$ then SC1 ft (dependent on quadratic factors or two roots from formula) for correct selection of +ve root, if only one +ve . Answer of 12 and -2 scores M2 only
(c)	53.1 to 53.2 www 3	3	M2 for $2 \times \tan ^{-1}\left(\frac{1}{2}\right)$ o.e. i.e. any complete method or M1 for $\tan =\frac{1}{2} \quad$ o.e. i.e. any correct method leading to any angle in diagram (expressions can be implicit and bod which angle is being worked out) (Implied by 26.56 to 26.57 or 26.6, 63.43 to 63.44 or $63.4,126.8$ to 126.9) 53 or 127 without working score 0
4 (a)	$(\cos (A))=\frac{6^{2}+8^{2}-9^{2}}{2.6 .8}$	M2	M1 for correct implicit equation with $\cos A$
	78.58... www 4	A2	A1 for 0.1979 to 0.198 (this implies M2)
(b)	(i) 78.6	1	Allow 78.58...
	(ii) $r=\frac{4.5}{\sin (78.6)}$ oe	M2	$\left(\mathrm{M} 1 \text { for } \sin (78.6)=\frac{4.5}{r}\right)$
	4.590 to 4.591 cao www 3	A1	Allow 78.58... or their angle BOM for M2 or M1
(c)	35.5 (35.48 to $35.57 \ldots$..) cao www 4	4	M1 Area triangle $=0.5 \times 6 \times 8 \times \sin (78.6)$ oe Allow 78.58.. (23.52..)
			```M1 Circle = }\pi\times4.5\mp@subsup{9}{}{2}\mathrm{ Allow 4.590 to 4.591 (66.15 to 66.22...) M1 (dependent) % = triangle / circle }\times10 Dependent on first 2 M's```


Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	43



Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	43

\begin{tabular}{|c|c|c|c|}
\hline 7 (a)

(b)

(c) \& | Correct tree diagram. $\frac{33}{40} \text { o.e. }(0.825) \text { cao }$ |
| :--- |
| 7 cao | \& 5

3

2 \& | B1 for labels flower and not flower |
| :--- |
| First pair B1 for $\frac{7}{10}$ and $\frac{3}{10}$ |
| B1 for next three branches after flowers |
| B1 for clear labels for colours |
| B1 for $\frac{2}{3}, \frac{1}{4}$ and $\frac{1}{12}$ in correct places |
| If three branches at ends of both branches of first pair, lose final $B$, unless probabilities of 0 indicated. |
| M2 for $1-\frac{7}{10} \times \frac{1}{4} \quad$ (M1 for $\frac{7}{10} \times \frac{1}{4}$ or $\left.\frac{7}{10} \times\left(1-\frac{1}{4}\right)\right)$ oe |
| or |
| M2 for $\frac{3}{10}+\frac{7}{10} \times \frac{2}{3}+\frac{7}{10} \times$ their $\frac{1}{12}$ |
| or $\frac{3}{10}+\frac{7}{10} \times \frac{3}{4}$ oe |
| M1 for $120 \times \frac{7}{10} \times$ their $\frac{1}{12}$ | <br>

\hline | $8 \text { (a) }$ |
| :--- |
| (b) |
| (c) |
| (d) | \& | Arc centre $D$, radius 6 cm |
| :--- |
| (i) Perp bisector of $A B$, with two pairs of arcs |
| (ii) Bisector of angle $B$, with arcs |
| (i) $Q$ at intersection of loci |
| (ii) 2.7 cm to $2.9 \mathrm{~cm} \quad \mathrm{cao}$ |
| Region inside arc, to left of perp bisector and below angle bisector | \& 1

2
2

1
1

1 \& | At least 3 cm from $A B . \mathrm{SC} 1$ accurate without arcs or accurate arcs (but no choice) |
| :--- |
| At least 5 cm from $B . \mathrm{SC} 1$ accurate without arcs or accurate arcs (but no choice) |
| Dependent on at least both SC1's |
| Dependent on (c)(i) |
| Dependent on at least both $\mathrm{SCl}^{\prime}$ 's in (b) | <br>

\hline $9(a)$

(b) \& | (i) 81 |
| :--- |
| (ii) 8.5 $\frac{x-1}{3} \mathrm{oe}$ | \& 2

2

2 \& | B1 for $(\mathrm{f}(2)=) 7$ |
| :--- |
| B1 for $(\mathrm{f}(0.5)=) 2.5$ |
| M1 for $(x=) \frac{y-1}{3}$ or $(x=) \frac{\mathrm{f}(x)-1}{3}$ or $3 y=x-1$ or $3 \mathrm{f}(x)=x-1$ or -1 then $\div 3$ in flowchart (must be clear) | <br>

\hline (c)

(d) \& | $3 x^{2}+12 x+13$ final answer $(x=) \frac{-3 \pm \sqrt{3^{2}-4(1)(1)}}{2(1)}$ |
| :--- |
| $-2.62,-0.38$ final answer | \& 2

1,1 \& | M1 for $3(x+2)^{2}+1$ or better |
| :--- |
| B1 for $\sqrt{3^{2}-4(1)(1)}$ or better Seen anywhere If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ oe, |
| B1 for $p=-3$ and $r=2(1)$ or $\left(x+\frac{3}{2}\right)^{2} \quad$ B1 then $\sqrt{\frac{9}{4}-1} \quad$ B1 |
| If $0, \mathrm{SC} 1$ for -2.6 or -2.62 or $-2.618 \ldots$ |
| and $-0.4(0)$ or -0.38 or -0.382 to -0.381 seen Answers only B1 B1 | <br>

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0580	43


10 (a)	(i) (a) $\mathbf{p}+\mathbf{q}$   (b) $\frac{1}{2} \mathbf{p}-\frac{1}{2} \mathbf{q}$ oe   (c) $\frac{3}{4} \mathbf{p}+\frac{3}{4} \mathbf{q}$ oe cao   (ii) $\overrightarrow{A N}$ is a multiple of $\overrightarrow{A C}$ o.e   (i) 30   (ii) 135	1 2 2 $1 \mathbf{f t}$	M1 for $\overrightarrow{L C}+\overrightarrow{C M}$ o.e. can be written in terms of $\mathbf{p}$ and/or $\mathbf{q}$   M1 for $\overrightarrow{A D}+\overrightarrow{D L}+\overrightarrow{L N}$ o.e can be written in terms of $\mathbf{p}$ and/or $\mathbf{q} \mathrm{ft}$ their (i)(b)   Must be vectors (dependent on answers to (a), (c))   M1 for $2 x+x+15+75=180$ or better ft 165 - their $x$ but only if final answer obtuse
11 (a)	(i) 10   (ii) $\frac{3 \times 4}{2}$ or $\frac{3 \times(3+1)}{2}(=6)$   (iii) 7260   (iv) 12840   (v) 160400   (i) 36,100   (ii) 11025   (iii) $\left[\frac{n(n+1)}{2}\right]^{2}$ oe   (iv) 3348900   (v) 32	2 2 2 1,1 1 1 1 2	M1 for $\mathrm{S}_{200}-\mathrm{S}_{120}(20100-7260)$ or $\frac{80}{2}(121+200)$ o.e.   M1 for $2(1+2+3+\ldots \ldots \ldots+400)$ o.e.   Ignore right-hand column   isw   M1 for square root then $\times 2$ (1056) or SC1 for answer 33

