CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

Candidates answer on the Question Paper.
Additional Materials: Electronic calculator Geometrical instruments Mathematical tables (optional) Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π use either your calculator value or 3.142 .
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 130.

This document consists of 16 printed pages.

1 A school has a sponsored swim in summer and a sponsored walk in winter.
In 2010, the school raised a total of $\$ 1380$.
The ratio of the money raised in \quad summer: winter $=62: 53$.
(a) (i) Show clearly that $\$ 744$ was raised by the swim in summer.

Answer (a)(i)
(ii) Alesha’s swim raised $\$ 54.10$. Write this as a percentage of $\$ 744$.

> Answer(a)(ii)
\qquad
(iii) Bryan's swim raised $\$ 31.50$.

He received 75 cents for each length of the pool which he swam.
Calculate the number of lengths Bryan swam.

> Answer(a)(iii)
(b) The route for the sponsored walk in winter is triangular.

(i) Senior students start at A, walk North to B, then walk on a bearing 110° to C.

They then return to A.
$A B=B C$.

Calculate the bearing of A from C.
(ii)

$A B=B C=6 \mathrm{~km}$.
Junior students follow a similar path but they only walk 4 km North from A, then 4 km on a bearing 110° before returning to A.

Senior students walk a total of 18.9 km .
Calculate the distance walked by junior students.
(c) The total amount, $\$ 1380$, raised in 2010 was 8% less than the total amount raised in 2009. Calculate the total amount raised in 2009.

2 In this question give all your answers as fractions.

The probability that it rains on Monday is $\frac{3}{5}$.
If it rains on Monday, the probability that it rains on Tuesday is $\frac{4}{7}$.
If it does not rain on Monday, the probability that it rains on Tuesday is $\frac{5}{7}$.
(a) Complete the tree diagram.

$$
\text { Monday } \quad \text { Tuesday }
$$

(b) Find the probability that it rains
(i) on both days,
Answer(b)(i)
(ii) on Monday but not on Tuesday,
Answer(b)(ii)
(iii) on only one of the two days.
Answer(b)(iii)
(c) If it does not rain on Monday and it does not rain on Tuesday, the probability that it does not rain on Wednesday is $\frac{1}{4}$.
Calculate the probability that it rains on at least one of the three days.

> Answer(c)

3 (a) p varies inversely as $(m+1)$.
When $p=4, m=8$.
Find the value of p when $m=11$.

$$
\text { Answer(a) } p=
$$

(b) (i) Factorise $x^{2}-25$.
(ii) Simplify $\frac{2 x^{2}+11 x+5}{x^{2}-25}$.
(c) Solve the inequality $5(x-4)<3(12-x)$.

4 (a)

The diagram shows triangle $F G H$, with $F G=14 \mathrm{~cm}, G H=12 \mathrm{~cm}$ and $F H=6 \mathrm{~cm}$.
(i) Calculate the size of angle $H F G$.
(ii) Calculate the area of triangle $F G H$.
(b)

The diagram shows triangle $P Q R$, with $R P=12 \mathrm{~cm}, R Q=18 \mathrm{~cm}$ and angle $R P Q=117^{\circ}$.
Calculate the size of angle $R Q P$.

(a) On the grid above, draw the image of
(i) shape A after translation by the vector $\binom{-3}{-2}$,
(ii) shape A after reflection in the line $x=-1$.
(b) Describe fully the single transformation which maps
(i) shape A onto shape B,

Answer(b)(i)
(ii) shape A onto shape C.

Answer(b)(ii)
(c) Find the matrix representing the transformation which maps shape A onto shape B.

(d) Describe fully the single transformation represented by the matrix $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.

In the diagram, $A B C D E F$ is a prism of length 36 cm .
The cross-section $A B C$ is a right-angled triangle.
$A B=19 \mathrm{~cm}$ and $A C=14 \mathrm{~cm}$.

Calculate
(a) the length $B C$,

$$
\text { Answer(a) } B C=
$$

cm [2]
(b) the total surface area of the prism,

Answer(b) \qquad cm^{2}
(c) the volume of the prism,

> Answer(c)
\qquad cm^{3}
(d) the length $C E$,

$$
\text { Answer(d) } C E=
$$

cm [2]
(e) the angle between the line $C E$ and the base $A B E D$.

7 (a) Complete the table of values for the equation $y=\frac{4}{x^{2}}, x \neq 0$.

| x | -4 | -3 | -2 | -1 | -0.6 | 0.6 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0.25 | 0.44 | | | 11.11 | | 4.00 | | 0.44 | |

(b) On the grid, draw the graph of $y=\frac{4}{x^{2}}$ for $-4 \leqslant x \leqslant-0.6$ and $0.6 \leqslant x \leqslant 4$.

[5]
(c) Use your graph to solve the equation $\frac{4}{x^{2}}=6$.

$$
\operatorname{Answer}(c) x=
$$

$$
\text { or } x=
$$

(d) By drawing a suitable tangent, estimate the gradient of the graph where $x=1.5$.
Answer(d)
(e) (i) The equation $\frac{4}{x^{2}}-x+2=0$ can be solved by finding the intersection of the graph of $y=\frac{4}{x^{2}}$ and a straight line.

Write down the equation of this straight line.
Answer(e)(i)
(ii) On the grid, draw the straight line from your answer to part (e)(i).
(iii) Use your graphs to solve the equation $\frac{4}{x^{2}}-x+2=0$.

8 The table below shows the marks scored by a group of students in a test.

Mark	11	12	13	14	15	16	17	18
Frequency	10	8	16	11	7	8	6	9

(a) Find the mean, median and mode.

$$
\begin{array}{r}
\text { Answer (a) mean }= \\
\text { median }= \\
\text { mode }=
\end{array}
$$

(b) The table below shows the time (t minutes) taken by the students to complete the test.

Time (t)	$0<t \leqslant 10$	$10<t \leqslant 20$	$20<t \leqslant 30$	$30<t \leqslant 40$	$40<t \leqslant 50$	$50<t \leqslant 60$
Frequency	2	19	16	14	15	9

(i) Cara rearranges this information into a new table.

Complete her table.

Time (t)	$0<t \leqslant 20$	$20<t \leqslant 40$	$40<t \leqslant 50$	$50<t \leqslant 60$
Frequency				9

(ii) Cara wants to draw a histogram to show the information in part (b)(i).

Complete the table below to show the interval widths and the frequency densities.

	$0<t \leqslant 20$	$20<t \leqslant 40$	$40<t \leqslant 50$	$50<t \leqslant 60$
Interval width				10
Frequency density				0.9

(c) Some of the students were asked how much time they spent revising for the test.

10 students revised for 2.5 hours, 12 students revised for 3 hours and n students revised for 4 hours.

The mean time that these students spent revising was 3.1 hours.
Find n.
Show all your working.

Answer(c) $n=$

9 Peter wants to plant x plum trees and y apple trees.
He wants at least 3 plum trees and at least 2 apple trees.
(a) Write down one inequality in x and one inequality in y to represent these conditions.

> Answer(a)
(b) There is space on his land for no more than 9 trees.

Write down an inequality in x and y to represent this condition.

> Answer(b)
(c) Plum trees cost $\$ 6$ and apple trees cost $\$ 14$.

Peter wants to spend no more than $\$ 84$.
Write down an inequality in x and y, and show that it simplifies to $3 x+7 y \leqslant 42$.
Answer(c)
(d) On the grid, draw four lines to show the four inequalities and shade the unwanted regions.

(e) Calculate the smallest cost when Peter buys a total of 9 trees.

10 The first and the nth terms of sequences A, B and C are shown in the table below.
(a) Complete the table for each sequence.

	1 st term	2nd term	3rd term	4th term	5th term	nth term
Sequence A	1					n^{3}
Sequence B	4					$4 n$
Sequence C	4					$(n+1)^{2}$

(b) Find
(i) the 8th term of sequence A,

> Answer(b)(i)
(ii) the 12th term of sequence C.

Answer(b)(ii)
(c) (i) Which term in sequence A is equal to 15625 ?
Answer(c)(i)
(ii) Which term in sequence C is equal to 10000 ?
Answer(c)(ii)
(d) The first four terms of sequences D and E are shown in the table below.

Use the results from part (a) to find the 5th and the nth terms of the sequences D and E.

	1st term	2nd term	3rd term	4th term	5th term	nth term
Sequence D	5	16	39	80		
Sequence E	0	1	4	9		

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

