
CENTRE NUMBER

CANDIDATE NUMBER

MATHEMATICS

0580/42
Paper 4 (Extended)
October/November 2011
2 hours 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Electronic calculator Geometrical instruments Mathematical tables (optional) Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π use either your calculator value or 3.142 .
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 130.

1 Children go to camp on holiday.
(a) Fatima buys bananas and apples for the camp.
(i) Bananas cost $\$ 0.85$ per kilogram.

Fatima buys 20 kg of bananas and receives a discount of 14%.

How much does she spend on bananas?

Answer(a)(i) \$
(ii) Fatima spends $\$ 16.40$ on apples after a discount of 18%.

Calculate the original price of the apples.

Answer(a)(ii) \$
(iii) The ratio number of bananas: number of apples $=4: 5$.

There are 108 bananas.
Calculate the number of apples.

> Answer(a)(iii)
(b) The cost to hire a tent consists of two parts.

The total cost for 4 days is $\$ 27.10$ and for 7 days is $\$ 34.30$.
Write down two equations in c and d and solve them.

$$
\begin{array}{r}
\text { Answer }(b) \mathrm{c}= \\
d=
\end{array}
$$

(c) The children travel 270 km to the camp, leaving at 0743 and arriving at 1513 .

Calculate their average speed in km / h.

Answer(c)
km/h
(d) Two years ago $\$ 540$ was put in a savings account to pay for the holiday.

The account paid compound interest at a rate of 6% per year.
How much is in the account now?

$$
\begin{aligned}
& \mathrm{f}(x)=4 x-2 \\
& \mathrm{~g}(x)=\frac{2}{x}+1 \\
& \mathrm{~h}(x)=x^{2}+3
\end{aligned}
$$

(a) (i) Find the value of $\operatorname{hf}(2)$.
(ii) Write $\operatorname{fg}(x)$ in its simplest form.

$$
\text { Answer(a)(ii) } \operatorname{fg}(x)=
$$

(b) Solve $\mathrm{g}(x)=0.2$.

$$
\text { Answer(b) } x=
$$

(c) Find the value of $\operatorname{gg}(3)$.
(d) (i) Show that $\mathrm{f}(x)=\mathrm{g}(x)$ can be written as $4 x^{2}-3 x-2=0$. Answer (d)(i)
(ii) Solve the equation $4 x^{2}-3 x-2=0$.

Show all your working and give your answers correct to 2 decimal places.

Triangles T and A are drawn on the grid above.
(a) Describe fully the single transformation that maps triangle T onto triangle A.

Answer(a)
(b) (i) Draw the image of triangle T after a rotation of 90° anticlockwise about the point $(0,0)$.

Label the image B.
(ii) Draw the image of triangle T after a reflection in the line $x+y=0$.

Label the image C.
(iii) Draw the image of triangle T after an enlargement with centre $(4,5)$ and scale factor 1.5 .

Label the image D.
(c) (i) Triangle T has its vertices at co-ordinates $(2,1),(6,1)$ and $(6,3)$.

Transform triangle T by the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
Draw this image on the grid and label it E.
(ii) Describe fully the single transformation represented by the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.

> Answer(c)(ii)
(d) Write down the matrix that transforms triangle B onto triangle T.

4 Boris has a recipe which makes 16 biscuits.
The ingredients are

$$
\begin{aligned}
& 160 \mathrm{~g} \text { flour, } \\
& 160 \mathrm{~g} \text { sugar, } \\
& 240 \mathrm{~g} \text { butter, } \\
& 200 \mathrm{~g} \text { oatmeal. }
\end{aligned}
$$

(a) Boris has only 350 grams of oatmeal but plenty of the other ingredients.
(i) How many biscuits can he make?
Answer(a)(i)
(ii) How many grams of butter does he need to make this number of biscuits?

> Answer(a)(ii)
(b) The ingredients are mixed together to make dough.

This dough is made into a sphere of volume $1080 \mathrm{~cm}^{3}$.
Calculate the radius of this sphere.
[The volume, V, of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.]
(c)

The $1080 \mathrm{~cm}^{3}$ of dough is then rolled out to form a cuboid $20 \mathrm{~cm} \times 30 \mathrm{~cm} \times 1.8 \mathrm{~cm}$.
Boris cuts out circular biscuits of diameter 5 cm .
(i) How many whole biscuits can he cut from this cuboid?
Answer(c)(i)
(ii) Calculate the volume of dough left over.

5 (a) The times, t seconds, for 200 people to solve a problem are shown in the table.

Time $(t$ seconds $)$	Frequency
$0<t \leqslant 20$	6
$20<t \leqslant 40$	12
$40<t \leqslant 50$	20
$50<t \leqslant 60$	37
$60<t \leqslant 70$	42
$70<t \leqslant 80$	50
$80<t \leqslant 90$	28
$90<t \leqslant 100$	5

Calculate an estimate of the mean time.
(b) (i) Complete the cumulative frequency table for this data.

Time $(t$ seconds $)$	$t \leqslant 20$	$t \leqslant 40$	$t \leqslant 50$	$t \leqslant 60$	$t \leqslant 70$	$t \leqslant 80$	$t \leqslant 90$	$t \leqslant 100$
Cumulative Frequency	6	18	38			167		

(ii) Draw the cumulative frequency graph on the grid opposite to show this data.
(c) Use your cumulative frequency graph to find
(i) the median time,
Answer(c)(i)
(ii) the lower quartile,
Answer(c)(ii)
(iii) the inter-quartile range,

Answer(c)(iii)
(iv) how many people took between 65 and 75 seconds to solve the problem,
Answer(c)(iv)
(v) how many people took longer than 45 seconds to solve the problem.
Answer(c)(v)

A solid cone has diameter 9 cm , slant height 10 cm and vertical height $h \mathrm{~cm}$.
(a) (i) Calculate the curved surface area of the cone.
[The curved surface area, A, of a cone, radius r and slant height l is $A=\pi r l$.]

Answer(a)(i) \qquad cm^{2}
(ii) Calculate the value of h, the vertical height of the cone.

$$
\operatorname{Answer(a)(ii)~} h=
$$

(b)

NOT TO
SCALE

Sasha cuts off the top of the cone, making a smaller cone with diameter 3 cm .
This cone is similar to the original cone.
(i) Calculate the vertical height of this small cone.
(ii) Calculate the curved surface area of this small cone.

> Answer(b)(ii)
cm^{2}
(c)

The shaded solid from part (b) is joined to a solid cylinder with diameter 9 cm and height 12 cm .
Calculate the total surface area of the whole solid.

7 The diagram shows the accurate graph of $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=\frac{1}{x}+x^{2}$ for $0<x \leqslant 3$.

(a) Complete the table for $\mathrm{f}(x)=\frac{1}{x}+x^{2}$.

x	-3	-2	-1	-0.5	-0.3	-0.1
$\mathrm{f}(x)$		3.5	0	-1.8		

(b) On the grid, draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x<0$.
(c) By drawing a tangent, work out an estimate of the gradient of the graph where $x=2$.

> Answer(c)
(d) Write down the inequality satisfied by k when $\mathrm{f}(x)=k$ has three answers.

> Answer(d)
(e) (i) Draw the line $y=1-x$ on the grid for $-3 \leqslant x \leqslant 3$.
(ii) Use your graphs to solve the equation $1-x=\frac{1}{x}+x^{2}$.

$$
\begin{equation*}
\text { Answer(e)(ii) } x= \tag{1}
\end{equation*}
$$

(f) (i) Rearrange $x^{3}-x^{2}-2 x+1=0$ into the form $\frac{1}{x}+x^{2}=a x+b$, where a and b are integers. Answer(f)(i)
(ii) Write down the equation of the line that could be drawn on the graph to solve $x^{3}-x^{2}-2 x+1=0$.

$$
\text { Answer(f)(ii) } y=
$$

NOT TO
SCALE

Parvatti has a piece of canvas $A B C D$ in the shape of an irregular quadrilateral.
$A B=3 \mathrm{~m}, A C=5 \mathrm{~m}$ and angle $B A C=45^{\circ}$.
(a) (i) Calculate the length of $B C$ and show that it rounds to 3.58 m , correct to 2 decimal places.

You must show all your working.

Answer(a)(i)
(ii) Calculate angle $B C A$.
(b) $A C=C D$ and angle $C D A=52^{\circ}$.
(i) Find angle $D C A$.
(ii) Calculate the area of the canvas.

Answer(b)(ii)

\qquad m^{2}
(c) Parvatti uses the canvas to give some shade.

She attaches corners A and D to the top of vertical poles, $A P$ and $D Q$, each of height 2 m .
Corners B and C are pegged to the horizontal ground.
$A B$ is a straight line and angle $B P A=90^{\circ}$.

Calculate angle $P A B$.

9 (a) Emile lost 2 blue buttons from his shirt.
A bag of spare buttons contains 6 white buttons and 2 blue buttons.
Emile takes 3 buttons out of the bag at random without replacement.
Calculate the probability that
(i) all 3 buttons are white,

> Answer(a)(i)
(ii) exactly one of the 3 buttons is blue.
(b) There are 25 buttons in another bag.

This bag contains x blue buttons.
Two buttons are taken at random without replacement.
The probability that they are both blue is $\frac{7}{100}$.
(i) Show that $x^{2}-x-42=0$.

Answer (b)(i)
(ii) Factorise $x^{2}-x-42$.

Answer(b)(ii)
(iii) Solve the equation $x^{2}-x-42=0$.

$$
\text { Answer(b)(iii) } x=
$$

$$
\text { or } x=
$$

(iv) Write down the number of buttons in the bag which are not blue.
Answer(b)(iv)

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

