CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

MATHEMATICS

0580/21
Paper 2 (Extended)
May/June 2012
1 hour 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Electronic calculator Geometrical instruments Mathematical tables (optional) Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 70 .

This document consists of 12 printed pages.

1 The price of a ticket for a football match is $\$ 124$.
(a) Calculate the amount received when 76500 tickets are sold.

Answer(a) \$

(b) Write your answer to part (a) in standard form.

Answer(b) \$

2 Gregor changes $\$ 700$ into euros $(€)$ when the rate is $€ 1=\$ 1.4131$.
Calculate the amount he receives.

3 Factorise completely.

$$
15 p^{2}+24 p t
$$

4 Write the following in order of size, smallest first.

$$
0.47 \quad \frac{8}{17} \quad \sqrt{0.22} \quad \tan 25^{\circ}
$$

Answer

$<$ \qquad $<$ \qquad $<$ \qquad

Calculate the value of x.

6 Leon scores the following marks in 5 tests.

$$
\begin{array}{lllll}
8 & 4 & 8 & y & 9
\end{array}
$$

His mean mark is 7.2.
Calculate the value of y.

7 The sides of a rectangle are 6.3 cm and 4.8 cm , each correct to 1 decimal place.
Calculate the upper bound for the area of the rectangle.

Answer
cm^{2}
\qquad
$8 \quad$ Find r when $(5)^{\frac{r}{3}}=125$.

9

(a) The point C lies on $A D$ and angle $A B C=67^{\circ}$.

Draw accurately the line $B C$.
(b) Using a straight edge and compasses only, construct the perpendicular bisector of $A B$. Show clearly all your construction arcs.

10 Shania invests $\$ 750$ at a rate of $2 \frac{1}{2} \%$ per year simple interest.
Calculate the total amount Shania has after 5 years.

11 Solve the simultaneous equations.

$$
\begin{aligned}
3 x+5 y & =24 \\
x+7 y & =56
\end{aligned}
$$

Answer x =
$y=$

12 Without using your calculator, work out $1 \frac{5}{6}+\frac{9}{10}$.
You must show your working and give your answer as a mixed number in its simplest form.

> Answer
$13 y$ is inversely proportional to x^{2}.
When $x=4, y=3$.
Find y when $x=5$.

14

The region \boldsymbol{R} contains points which satisfy the inequalities

$$
y \leqslant \frac{1}{2} x+4, \quad y \geqslant 3 \quad \text { and } \quad x+y \geqslant 6 .
$$

On the grid, label with the letter \boldsymbol{R} the region which satisfies these inequalities.
You must shade the unwanted regions.

15 The scale of a map is $1: 500000$.
(a) The actual distance between two towns is 172 km .

Calculate the distance, in centimetres, between the towns on the map.

Answer(a)
cm [2]
(b) The area of a lake on the map is $12 \mathrm{~cm}^{2}$.

Calculate the actual area of the lake in km^{2}.

$$
\mathbf{M}=\left(\begin{array}{rr}
5 & 2 \\
-3 & 4
\end{array}\right) \quad \mathbf{N}=\left(\begin{array}{rr}
-1 & -2 \\
2 & 6
\end{array}\right)
$$

Calculate
(a) MN ,
(b) \mathbf{M}^{-1}, the inverse of \mathbf{M}.

17 Make w the subject of the formula.

$$
c=\frac{4+w}{w+3}
$$

The diagram shows the speed-time graph for the first 120 seconds of a car journey.
(a) Calculate the acceleration of the car during the first 25 seconds.
Answer(a)

$$
\mathrm{m} / \mathrm{s}^{2}[1]
$$

(b) Calculate the distance travelled by the car in the first 120 seconds.

O is the origin and $O P Q R S T$ is a regular hexagon.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O T}=\mathbf{t}$.
Find, in terms of \mathbf{p} and \mathbf{t}, in their simplest forms,
(a) $\overrightarrow{P T}$,

$$
\begin{equation*}
\text { Answer(a) } \overrightarrow{P T}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{P R}$,

$$
\begin{equation*}
\text { Answer(b) } \overrightarrow{P R}= \tag{2}
\end{equation*}
$$

(c) the position vector of R.

R and T are points on a circle, centre O, with radius 5 cm .
$P R$ and $P T$ are tangents to the circle and angle $P O T=78^{\circ}$.
A thin rope goes from P to R, around the major $\operatorname{arc} R T$ and then from T to P.

Calculate the length of the rope.
\qquad

Question 21 is printed on the next page.

21 In this question, give all your answers as fractions.

A box contains 3 red pencils, 2 blue pencils and 4 green pencils.
Raj chooses 2 pencils at random, without replacement.
Calculate the probability that
(a) they are both red,

> Answer(a)
(b) they are both the same colour,

> Answer(b)
(c) exactly one of the two pencils is green.

> Answer(c) publisher will be pleased to make amends at the earliest possible opportunity.

