CAMBRIDGE
INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/01 PHYSICS
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	1

Question Number	Key	Question Number	Key
1	A	21	D
2	B	22	D
3	B	23	B
4	C	24	B
5	D	25	B
6	C	26	D
7	A	27	A
8	D	28	A
9	B	29	B
10	B	30	D
11	A	31	C
12	C	32	D
13	B	33	A
14	D	34	A
15	B	35	C
16	A	36	B
17	A	37	D
18	A	38	A
19	B	39	D
20	D	40	B

TOTAL 40

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/02

PHYSICS
Paper 2 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	2

NOTES ABOUT MARK SCHEME SYMBOLS

B marks	are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.
M marks	are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
C marks	are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they have known it, e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.
A marks	are accuracy or answer marks which either depend on an M mark, or allow a C mark to be scored.
c.a.o.	means 'correct answer only'.
e.c.f.	means 'error carried forward'. This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applied to marks annotated 'e.c.f.'.
e.e.o.o.	means 'each error or omission'.
Brackets ()	around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. $10(\mathrm{~J})$ means that the mark is scored for '10', regardless of the unit given.
Underlining	indicates that this must be seen in the answer offered, or something very similar.
Un.pen.	means 'unit penalty'. An otherwise correct answer will have one mark deducted if the unit is wrong or missing. This only applies where specifically stated in the mark scheme. Elsewhere, incorrect or missing units are condoned.
OR/or	indicates alternative answers, any one of which is satisfactory for scoring the marks.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	2

4 (a) idea of air molecules moving (allow vibrating)
F
C1 (N.B. 'collide' = 'moving')
idea of air molecules striking something (condone themselves)
idea of air molecules striking walls
C \quad A1
(b) (i) moves down
$F \quad B 1$
(ii) increases (e.c.f.)
\(\left.$$
\begin{array}{l}\text { increases (e.c.f.) } \\
\begin{array}{l}\text { idea of more collisions } \\
\text { (per unit time) (e.c.f.) } \\
\text { OR } P \propto \frac{1}{v}\end{array}
$$

F\end{array}\right\}\)| must follow |
| :--- | :--- | :--- |
| from (i) |

C

5
(a) line starting at $0^{\circ} \mathrm{C}$
reasonably horizontal line at any temp for \geqslant half the time
horizontal from zero time as far as dotted line (ignore anything to R. of line)

F	B1
C	M11
C	$\left.\begin{array}{l}\text { A1 }\end{array}\right\}$mark along- side graph

(b) (i) water boils OR heat loss =

C \quad B1
mark (i) and (ii)
(ii) gives water/molecules energy to together

F
C1
must follow
A1

OR P $\propto \frac{1}{V}$

escape OR break bonds OR change state OR heat loss from sides/surface/to air

6 (a) (i) normal correct, by eye
(ii) reflected ray correct, by eye (ignore normal; ignore any arrow)
$F \quad B$
(ii) both i and r correctly marked (condone

F
(b) parallel to ray striking mirror 1 (allow incident ray) OR same direction (NOT equal/same as)

C
B1
(N.B. sentence must be completed, i.e. no inference from line on diagram)

Page 4		Mark Scheme	Syllabus	Paper
		IGCSE EXAMINATIONS - JUNE 2003	0625	2
$7 \begin{array}{rr} \\ & \text { (a) } \\ & \text { (b) } \\ \\ & \text { (c) }\end{array}$	680	102013601700	F	B1
	5 points plotted $\pm \frac{1}{2}$ small square (-1 e.e.o.o.) ignore 0,0 (e.c.f.)		F	B2
	reasonable line through his points drawn with rule/thickness reasonable		F	B1
	(i)	flash	F	B1
		light travels quickly OR sound travels slowly (accept figure)	F	C1
		light travels faster than sound (accept figure)	F	C1
		light travels much faster than sound (accept figures)	C	A1
	(iii)	1400-1450 OR correct value from his graph $\pm \frac{1}{2}$ square	F	B1
		clear and correct indication on graph of how obtained (minimum: dot at appropriate point)	F	$\frac{\mathrm{B} 1}{10}$

8 (a) Charge(s) OR energy (NOT electricity (condone as extra), charged particles (condone as extra), current, electrons (condone as extra), voltage)
(b) (i) 0

C \quad B1
(ii) mention of 6 V

F
B1
mention of rising OR not instantaneous (NOT
C
B1 'reads')
(iii) any realistic example of something turned

F
B1 on/off after a time lapse, e.g. electronic egg timer, turn-off bedside radio
$9 \quad$ (a) (i) wire shown curved between A and B
wire displaced all along between A and B, and reasonably smooth
(ii) idea of force (in any direction)

F

C

F M1
on current/current-carrying conductor
C
when in magnetic field
C
A1

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE EXAMINATIONS - JUNE 2003	$\mathbf{0 6 2 5}$	$\mathbf{2}$
(b) line curved in opposite direction	F	$\underline{B 1}$ 6mark along-	
side diagram			

10

(a)	(i)	electrons OR cathode rays (NOT betaparticles)	F	B1
		something 'hitting' the screen (NOT 'form a spot')	F	B1
		idea of fluorescence (of the screen, NOT 'the gas')	C	B1
	(ii)	focus	C	B1
	(iii)	time base OR ms/cm	C	B1
	(iv)	electrons/cathode rays deflected (e.c.f. from (i); allow 'attracted' if intention clear)	F	B1
		something deflected horizontally	C	M1
		some idea of repeated sweeps/back and forth	C	A1
(b)	(i)	(y-)input (allow y-plates)	F	B1
	(ii)	1. trace moves horizontally/sideways/left/right	C	B1
		2. trace moves vertically/up/down	C	B1

11

11
(a) Connection to either side of cell, but not shorted out

F
B1
VR in series with lamp, and not shorted out OR
F
B1 correctly connected as a potential divider (condone inclusion of a switch)
$\begin{array}{llll}\text { (b) } & \text { (i) } \mathrm{R}_{1}+\mathrm{R}_{2} & \mathrm{~F} & \mathrm{C} 1 \\ & 12 & \mathrm{~F} & \mathrm{~A} 1 \\ \text { (ii) } \begin{array}{l}\text { 1. Resistance }=\text { p.d./current in any form } \\ \text { (words/letters/mix) }\end{array} & \mathrm{F} & \mathrm{C} 1 \\ & \text { C/12 e.c.f. } & \mathrm{C} & \mathrm{C} 1 \\ & \text { C.5 or } \frac{1}{2} \text { e.c.f. } & \mathrm{C} & \mathrm{A} 1\end{array}$

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	2

$\left.\begin{array}{r}\text { 2. his calculated current } \\ \text { his calculated current } \\ \text { his calculated current }\end{array}\right\} \quad$ all $3 \quad$ C \quad B1

A OR amp OR ampere somewhere in (ii)
F

B1

(iii) voltmeter shown correctly connected (any recognisable symbol; allow re-drawn circuit)
$\left.\begin{array}{l}\mathrm{C} \\ \underline{10}\end{array}\right\} \begin{aligned} & \text { mark } \\ & \text { along- } \\ & \text { side } \\ & \text { diagram }\end{aligned}$

12 (a) his weight
F
B1
(b) distance OR height

F
B1
(c) (i) 1000 N climber OR heavier OR first

F
B1
(ii) his answer to (i)

F
B1
(d) (i) chemical (accept fuel)

C \quad B1
(ii) food (accept muscles)

C
B1
(iii) maintaining body function
$\left.\begin{array}{l}\text { heat loss } \\ \begin{array}{l}\text { K.E. } \\ \text { sounds }\end{array}\end{array}\right\}$ any 1

Mark first correct answer, condone extras

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: $\mathbf{8 0}$

SYLLABUS/COMPONENT: 0625/03
PHYSICS
Paper 3 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	3

1
(a) (i) force of gravity acts on masses/weight of masses
(ii) vector has direction/force has direction
(b) (i) spring 1 (more difficult) any correct relevant pair of values M1
(ii) P marked at extension 25 mm to 28 mm A1 explanation in terms of end of proportionality B1
(iii) each graph read at 15 N , approx. $25 \mathrm{~mm}, 19 \mathrm{~mm}$ difference correct, $6 \mathrm{~mm}+/-1 \mathrm{~mm}$ C1 A1

C1
change in speed is $1.5 \mathrm{~m} / \mathrm{s}$
deceleration $=$ decrease in speed/time or $1.5 / 12$ $a=(-/+) 0.125 \mathrm{~m} / \mathrm{s}$ C1 A1
(b) average speed $=1.75 \mathrm{~m} / \mathrm{s}$ distance $=21 \mathrm{~m}$

950 N and 1220 N in correct relative directions C1 correct resultant drawn in
weight $=1785 \mathrm{~N}$ [limits 1700 N to 1850 N]
(b) (i) work $=$ force x distance or 1500×3.0 C1
work $=4500 \mathrm{~J}$
(ii) power = work/time or 4500/2.5
power $=1800 \mathrm{~W}$

4 (a) air molecules hit dust particles
hits continuously/unevenly/hits cause movement in all directions
air molecules fast moving/high energy
(b) any attempt to use p $\times \mathrm{v}=$ constant or correct C1
proportion
fraction $2 \times 80 / 25$ seen C1
$p=6.4 \times 10(\mathrm{~Pa})$

C1
A1

3

5

(a)	Y is a wire of different metal/not copper
	Z is a galvanometer/millivoltmeter/milliammeter
(b)	2 junctions at different temperatures, accept one hot, one cold
	temperature difference causes e.m.f./voltage/current reading of meter changes (with temperature)
	1 junction at known temperature/need for calibration

2

$\max 3$

1
[6]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	3

6 (a) (i) incident ray, refracted ray and normal drawn
all correct and meeting at a point
A1
(ii) angle of incidence and refraction correctly identified B1
(iii) values correct within agreed limits

B1
(b) use of sini/sinr

C1
correct substitution from candidates values
value correct within agreed limits from candidate's
values C1
correct substitution from candidates values
value correct within agreed limits from candidate's
values
correct substitution from candidates values
value correct within agreed limits from candidate's
values
A1
3
[7]
7 (a) value $3 \times 10 \mathrm{~m} / \mathrm{s}$
A1
(b) speed of light (much) greater than speed of sound or
value for sound
A1
4
(c) (i) source and receiver arrangement C1 with detail and labels A1
(ii) distance between source and receiver B1 time between flash and bang B1
(iii) speed = distance/time B1

$\max 4$

[6]
8 (a) (i) use of charge $=$ It or $\mathrm{I}=90 / 45$
C1
current $=2 \mathrm{~A}$
A1
(ii) resistance $=$ voltage/current or $6 / 2 \quad$ C1
resistance is 3 ohm
A1
$\begin{array}{ll}\text { (iii) } \begin{array}{l}\text { energy }=\text { Vit or } \mathrm{Vq} \text { or } 6 \times 90 \\ \text { energy is } 540 \mathrm{~J}\end{array} & \text { C1 } \\ \text { A1 }\end{array}$
(b) idea of energy transfer

C1
is (6) J/C
A1
6

2
[8]
9 (a) (i) power = VI or 24×2
C1
power is 48 W
A1
(ii) voltage $=$ power/current or 48/0.4

C1
voltage is 120 V
A1
(b) (i) no/very little energy/power lost or energy/power in = energy/power out

B1
(ii) any mention of magnetic field B1 changing magnetic field B1
field passes through core or secondary coil B1 induces voltage in secondary coil B1 number of turns on secondary determines voltage outputB1

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	3

10 (a) (i) circular line of force around wire through P arrow(s) on line anticlockwise - none wrong
(ii) arrow through Q to left
(b) (i) none/stays same

B1
(ii) direction reverses B1

M1

A1
A1

B1
B1
B1

B1

B1
named absorber/air and labels
B1 B1
(ii) take detector reading with no source (background)
detector reading with source, detector and air only
detector reading with appropriate named absorber
(ii) take detector reading with no source (background)
detector reading with source, detector and air only
detector reading with appropriate named absorber (including distance in air)

B1
(iii) same reading with absorber(including air) as background
so all alpha absorbed by cardboard/paper/air, others would get through
(b) curved path stated or drawn \quad path at right angles to magnetic field
(b) curved path stated or drawn \quad path at right angles to magnetic field into paper

B1
B1
B1

11 (a) (i) source, detector 1

3

2

3

[8]

B1 max 6

3
[9]

TOTAL 80

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0625/05

 PHYSICSPractical

1. two room temp readings (sensible) 1
table completed, temps rising 1
evidence of temp to better than 1 deg 1
all temps to better than 1 deg 1
time unit 1
temp unit 1
Graph
temp axis labelled 1
scale suitable 1
plotting (check one on A) 1
plotting (check one on B) 1
line judgement shape 1
thickness 1
Statement 1
Justification (adequate) 1
OR good 2
TOTAL 15
2. d sensible 1
unit 1
diagram blocks parallel and in correct position 1
rule position shown 1
r correct 1
h sensible with unit 1
V calculation correct 1
c stated (sensible) 1
at least 5 turns used 1
calculation of V 1
average calculated 1
2/3 sf 1
unit 1
sensible G estimate 1
v correct, $2 / 3 \mathrm{sf}$, unit 1
3. three correct units 3
both I to at least 1 dp1
both V to at least 1 dp 1
R value (check first) correct 1
both R to $2 / 3$ sf 1
correct ratio (as decimal) 1
no unit 1
2/3 sf 1
ratio 1.8-2.2 1

Diagram
voltmeter in parallel across the motors
ammeter correct
variable resistor connected to vary current through one motor
correct symbols for all three
4. angle $30(\pm 1) \quad 1$
angle $40(\pm 1) \quad 1$
pins F and G at least 5 cm apart 1
GF correct and neat 1
new GF line correct and neat 1
x line correct position 1
record of x correct 1
unit 1
y line correct position 1
record of y correct
1
unit (same as x , stated or not) 1
correct ratio x/y 1
no unit 1
2/3 sf
value

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/06

PHYSICS

Alternative to Practical

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - JUNE 2003	0625	6

1 (a) Seven correct values: $0,2,3,6,9,10,12$ (-1 each error) 2
(b) Graph:

Scales, labelled, suitable size 1
Axes, right way round 1
Plots to $1 / 2$ sq (-1 each error) 2
(c) Line shape 1

Line thickness 1
Triangle greater than $1 / 2$ line and method used 1
Correct interpolation to $1 / 2 \mathrm{sq} \quad 1$
TOTAL 10

2 (a) $36^{\circ}\left(\pm 1^{\circ}\right) \quad 1$
(b) Refracted ray drawn 1
$22^{\circ}\left(\pm 1^{\circ}\right) \quad 1$
normal correct (by eye) 1
neat, thin, correct lines 1
(c) Correct refracted ray (by eye) with arrow 1
(d) Separation (LHS) at least $5 \mathrm{~cm} \quad 1$

Separation (RHS) at least $5 \mathrm{~cm} \quad 1$
TOTAL 8

3 (a) (i) Voltmeter across lamp 1
(ii) Variable resistor/rheostat 1
(b) Correct position 1
(c) V 1

A 1
$\Omega \quad 1$
correct R at $9.8 \mathrm{~V}=8.16666$ (any sf) 1
all R to $2 / 3$ sf 1
consistent 2 sf or consistent 3 sf 1
TOTAL 9

4 (a) (i) $6.8 \mathrm{~cm}(68 \mathrm{~mm}) \quad 1$
(ii) 6.8 1
unit, mm 1
(b) (i) $3.8 / 3.77$ or $0.38 / 0.377 \quad 1$
mm or cm as appropriate 1
(ii) 0.94/0.95 (or evidence of division by 4) 1
(iii) $0.75094 / 0.75095$ 1
(c) Thickness of string/thickness of marks on string/stretching of string/metre rule measures to 1 mm

5 (a) (i) polystyrene
(ii) Least steep curve (or numbers suitably quoted)
(b) Three from:

Thickness of insulator
Room temp.
Starting temp.
Mass/vol./amount of water
Using same can

Grade thresholds taken for Syllabus 0625 (Physics) in the June 2003 examination.

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 1	40	-	29	23	19
Component 2	80	-	45	34	26
Component 3	80	53	32	-	-
Component 5	60	42	33	21	13
Component 6	40	34	26	20	15

The threshold (minimum mark) for B is set halfway between those for Grades A and C.
The threshold (minimum mark) for D is set halfway between those for Grades C and E .
The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

