MARK SCHEME for the November 2003 question papers

0625 PHYSICS

0625/01
0625/02
0625/03
0625/05
0625/06

Paper 1 (Multiple Choice), maximum mark 40
Paper 2 (Core), maximum mark 80
Paper 3 (Extended), maximum mark 80
Paper 5 (Practical), maximum mark 60
Paper 6 (Alternative to Practical), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0625 (Physics) in the November 2003 examination.

	maximum mark available	minimum mark required for grade:			
		C	E	F	
Component 1		-	27	23	19
Component 2		-	51	39	29
Component 3		54	33	-	-
Component 5	60	49	39	31	24
Component 6	40	31	24	18	13

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E . The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/01
PHYSICS
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	1

Question Number	Key	Question Number	Key
1	D	21	A
2	C	22	D
3	A	23	C
4	C	24	B
5	C	25	A
6	B	26	B
7	C	27	B
8	A	28	B
9	C	29	B
10	D	30	D
11	D	31	C
12	B	32	C
13	D	33	B
14	D	34	B
15	D	35	B
16	A	36	C
17	D	37	A
18	A	39	A
19	B	40	C
20	B		A

TOTAL 40

CAMBRIDGE

INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/02
 PHYSICS
 Paper 2 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - NOVEMBER 2003	0625	2

NOTES ABOUT MARK SCHEME SYMBOLS

B marks	are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.
M marks	are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
C marks	are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they have known it, e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the
A marks	equation, then the C mark is scored.
c.are accuracy or answer marks which either depend on an M mark, or	
allow a C mark to be scored.	

Page 2		Mark Scheme	Syllabus	Paper	
		PHYSICS - NOVEMBER 2003	0625	2	
QUESTION		SCHEME	TARGET	MARK	
1 (a)	(i)	G within block, to left of vertical through midpoint or $A B$ Vertical line shown through A	F	B1	
	(ii)		C	B1	
(b)		A more stable (or equivalent statement) e.g. less likely to topple or "weight within base"	F	M1	
		F	A1		
(c)			so it does not topple over (or equivalent)	F	B1
				5	
2		reference mark on wheel datum line (could be "top" or "bottom") *start timing/stopwatch as mark passes datum line time a number of rotations (accept 1 here) time at least 20 rotations *stop stopwatch divide time by number of rotations repeat make sure stopwatch at zero	*"(use sto time..." g of these 5C any 5	atch to) only one B5	
3		gravitational OR potential OR PE OR GPE $\left.\begin{array}{l}\text { motion OR KE OR kinetic } \\ \text { heat/internal/thermal } \\ \text { sound }\end{array}\right\}$ any order (-1 eeoo)	F	B1	
			3F	B3	
		heat (accept potential)	C	B1	
		OR internal/thermal			
		NOT strain potential/NOT chemical potential			
		NOT sound, even as an extra		$\underline{5}$	
4 (a)		vehicle 2	F	M1	
		large(r) $\underline{\text { area (in contact with ground) }}$	C	A1	
		low/less pressure	C	A1	
		less likely to sink/get stuck	F	A1	
(b)	(i)	small area	F	C1	
		large pressure	F	B1	
	(ii)	(weight spread over) large(r) area NOT body area	C	B1	
		small/less pressure	C	B1	
		reference to weight somewhere in (b)	C	B1	
				$\underline{9}$	
5 (a)	(i)	ray perpendicular to surface at A (by eye)	F	B1	
	(ii)	normal at B correct (by eye)	F	B1	
	(iii)	ray refracted down at B, but NOT along surface	C	B1	
	(iv)	normal at D correct (by eye)	F	B1	
	(v)	ray refracted up at D, but NOT along surface	C	B1	

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/03

PHYSICS

Paper 3 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	3

1 (a) (i)	7 (.0 s)	A1	
(ii)	PQ or $0-2 \mathrm{~s}$ or other correct description	A1	
	distance $=$ av. speed x time or area under graph	C1	
	distance $11 \times 2 \mathrm{~m}=22 \mathrm{~m}$	A1	4
(b) (i)	deceleration (now) uniform (test 2)	B1	
	slower/lower (average) value/value between that of $P Q$ and $Q R /$ takes longer (or values) time to come to rest.	B1	
(ii)	deceleration $=$ change in speed/time or 15/8	C1	
	value $=1.9 \mathrm{~m} / \mathrm{s}^{2}$	A1	4
(c) (i)	graph shows constant acceleration	B1	
	force $=\mathrm{ma}$ (and m is also constant) so force is constant	B1	
(ii)	towards the centre of the motion/circle	A1	3
			[11]
2 (a)	pressure $=$ depth $\times \mathrm{g} \times$ density of water	C1	
	pressure $=50 \times 10 \times 1000$	C1	
	so value is 500000 Pa or $\mathrm{N} / \mathrm{m}^{2}$	A1	3
(b)	force $=$ pressure \times area in any form	C1	
	force $=500000 \times 0.15 \times 0.07$	C1	
	force $=5250 \mathrm{~N}$	A1	3
			[6]
3 (a)	one slightly nearer the centre than the other	C1	
	20 kg is the nearer one to the pivot	A1	2
(b)	Clockwise moments = anticlockwise moments (about point/pivot) (accept opposite directions and equal)	A1	1
(c)	$18 \times 2.5=20 \times B$	C1	
	distance $=2.25(\mathrm{~m})$	A1	2
			[5]
4 (a)	Some have extra/more energy than others	B1	
	most energetic leave surface/ break liquid bonds etc	B2	M2
(b)	evaporation occurs strictly at the surface/at all temperature	B1	
	boiling occurs throughout liquid/ at one temperature (at normal at. pr.) $/ 100^{\circ} \mathrm{C}$	B1	2
(c)	energy supplied $=$ Wt $/ 60 \times 120$	C1	
	sp.latent heat $=$ energy/mass evaporated or $60 \times 120 / 3.2$	C1	
	value is $2250 \mathrm{~J} / \mathrm{g}$	A1	3
			[7]
5 (a) (i)	nitrogen	M1	
(ii)	copper-solid-molecules very tightly bonded together so separate little	B1	
	water - liquid - molecules less tightly bonded/still small separation	B1	
	nitrogen - gas - molecules "free" and not bonded so separate most	B1	M3

(N.B. accept 2 bonding statements for 2 marks. 1 separation statement for 1 mark)

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	3

(b) (i) (ii)	size of movement/change in length of liquid column per degree change in length (of liquid column) same for all degrees	B1 B1	2
			[5]
6 (a)	3 more roughly circular	B1	
	all drawn clearly circular, stop (well) clear of barrier and centred on slit	B1	
	wavelength constant throughout, both sides of barrier	B1	3
(b)	wavelength - speed/frequency in any form	C1	
	values substituted correctly	C1	
	answer $6 \times 10 \mathrm{~m}$	A1	3
			[6]
7	two dots, marked F, each 5.0 cm from the lens	A2	2
	each correct ray one mark	M2	2
	correct image, labeled I	A1	1
	rays pass along the axis undeviated/object distance same for all object/rays meet at same distance on image/image distance same for all image	B1	1
(e)	magnifying glass/eyepiece of telescope or microscope	B1	1
			[7]
$8 \text { (a) (i) }$ (ii)	0-6 (V) positive and negative	A1	
	all waves roughly 6 V amplitude	B1	
	3 waves approx. one wave every 0.1 s	B1	3
(b)	any mention of magnetic field	B1	
	coils (forced to) cut magnetic field	B1	
	includes e.m.f./voltage/current in the coils	B1	
	as in Fleming's R.H. rule	B1	M3
(c)	mechanical energy/work (in)/kinetic energy	B1	
	electrical (out) (+ heat) (ignore sound)	B1	2
			[8]
9 (a) (i) (ii) (iii)	regular (but)/not normal (sine) wave/several waves added together etc.	B1	
	1.6(V)	A1	
	connect known voltage to Y plates (without any changes to C.R.O.)	B1	
	read off against screen values	B1	4
(b) (i)	6.1 (cm) (accept 6 or any value in range 6.0 to 6.2)	A1	
(ii)	50 ms for 10 cm or 5 ms per cm e.c.f.	C1	
	so $6.1 \times 5 \mathrm{~ms}$ or 31 ms	A1	
(iii)	difference in time of runners finishing race or other timing between two closely separated events.	B1	4 $[8]$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	3

10 (a)	current = power/voltage or 150/12	C1	
	value is 12.5 A	A1	2
(b) (i)	sum of currents at junction $=$ current after junction/12.5 $\mathrm{A}=5.0 \mathrm{~A}+\mathrm{l}$	C1	
	value is 7.5 A	A1	
(ii)	power $=\mathrm{VI}$ or is 7.5×12 e.c.f from (i)	C1	
	value is 90 W	A1	
(iii)	resistance $=$ voltage/current or 12/7.5 e.c.f. from (i) but not from (a)	C1	
	value is 1.6Ω	A1	6
			[8]
11 (a)	top line correct, need 24 and 0	B1	
	bottom line correct, need 12 and -1 (accept β or e for electron	B1	2
(b)	particles take curved path (accept from diagram)	B1	
	move between the poles at right angles to lines of force	B1	
	move out of paper	B1	3
(c) (i)	use detector to pick up radiation (from isotope at points on/in body etc.)	B1	
	high count where circulation good or v.v. explained	B1	
(ii)	alpha particles all absorbed, none detected		
	beta particles may be largely absorbed, not penetrative enough gamma rays reach detector/leave body	B2	4
			[9]

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0625/05

 PHYSICSPractical

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - November 2003	0625	5

1 (b)(c) Table A, 6 temps, decreasing 1
Table B, 6 temps, decreasing 1
Temp unit 1
Time unit 1
Evidence of temp to better than $1^{\circ} \mathrm{C} \quad 1$
Consistently better than $1^{\circ} \mathrm{C} \quad 1$
(d) Graph:

Time axis suitable (no '3' scales allowed) 1
Time axis labeled 1
Check plots at 210 s and $240 \mathrm{~s} \quad 1$
lines judgement (best fit curves) 1
lines thickness 1
Both lines correctly labeled 1
(e) Conclusion:

Correct statement in relation to candidate's lines
Explained with correct reference to gradients
(if previous mark scored)
1
TOTAL 15

2 (b) $x=20.0(\mathrm{~cm}) \quad 1$
(c) y value less than $25 \mathrm{~cm} \quad 1$
y value to nearest mm 1
(d) $\quad \mathrm{d}=25(\mathrm{~cm})$ (allow e.c.f.) 1
(e) t value correct arith 1
(f) $x=30(\mathrm{~cm}) \quad 1$
y value in range $30.0-37.5(\mathrm{~cm}) \quad 1$
$d=37.5(\mathrm{~cm})$ (allow e.c.f.) 1
all x, y, d consistently in $m m, ~ c m$ or m (unit stated at least once) 1
x, y d units stated every time $\quad 1$
t value correct arith 1
t values within 0.5 cm of each other 1
(g) average t; correct method 1
final answer to $2 / 3$ sf 1
with correct unit 1

TOTAL 15

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - November 2003	0625	5

3 Trace
Neat thin lines 1
Lines complete 1
A and B correct positions 1
New B correct 1
$\mathrm{i}=\mathrm{r}$ (by eye) 1
CD at least $5 \mathrm{~cm} \quad 1$
Second CD at least $5 \mathrm{~cm} \quad 1$
Straight lines extended to $X \quad 1$
$X A$ drawn and Y labeled 1
(j) AY correct to $2 \mathrm{~mm} \quad 1$

YX correct to 2 mm 1
$A Y$ and $Y X$ same to within 10 mm 1
(k) Thickness of mirror OR thickness of pins OR thickness of lines 1
(I) Precaution (pin separation, view bases, vertical pins) 1

Reason 1
TOTAL 15
4. (b) $-(\mathbf{g}) \times$ in m, cm or $m m \quad 1$

V in V 1
k in $\mathrm{V} / \mathrm{m}, \mathrm{V} / \mathrm{cm}$ or $\mathrm{V} / \mathrm{mm} \quad 1$
correct x values ($0.200,0.400,0.800 \mathrm{~m}$) 1
all x to nearest $m m \quad 1$
x consistent sf 1
evidence of V to better than $0.5 \mathrm{~V} \quad 1$
all V to better than 0.5 V 1
3 k values 1
Check second k value, correct 1
all k to 2 sf OR all k to 3 sf 1
all k same to within $10 \% \quad 1$
(h) (voltage increases with length) 1

OR voltage proportional to length 2
$k=$ constant OR figures correctly quoted 1

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

November 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/06 PHYSICS
Alternative to Practical

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	6

1 (a) wind string round more than once 1
divide measured length by number of turns to find c 1
(b) (i) correct diagram, blocks parallel, one at each end 1
(ii) 119 mm OR 11.9 cm to 121 mm OR $12.1 \mathrm{~cm} \quad 1$
(c) $\quad V=32.39$ to $32.41 \quad 1$
$\mathrm{cm}^{3} \quad 1$
(d) (i) $\quad V_{m}=0.5-2 \mathrm{~cm}^{3}$
(ii) correct calculation and $2 / 3 \mathrm{sf} \quad$ (ignore unit) 1

TOTAL 8

2
(a) (i)(ii) 2 neat continuous rays (thickness up to as EF) 1
(iii) normal where incident ray meets mirror (90° by eye) 1
(iv) $\mathrm{i}=20^{\circ} \pm 1^{\circ}$ (allow e.c.f. if mark for normal not scored) 1
(b) (i)(ii) lines complete and neat with AX correctly intersecting 1
(iii) $A Y=5.9-6.1 \mathrm{~cm}$ AND $Y X=5.5+0.3 \mathrm{~cm} \quad 1$
(c) any one from:
thickness of mirror
thickness of lines
thickness of pins
judgement of where lines cross

3 (a) pointer at $0.35 \mathrm{~A} \quad 1$
(b) (i) variable resistor/rheostat/potentiometer 1
(ii) V (1

A 1
$\Omega \quad 1$
One R correct 1
All R correct (6.129,5.769, 4, correctly rounded) 1
Consistent sf for R (either all 2 sf or all 3 sf) 1
(iii) variable resistor/number of cells 1
(c) Voltmeter in parallel with resistors (or power source) 1

Ammeter next to $X \quad 1$
Symbols correct and all connections drawn in 1

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS - NOVEMBER 2003	0625	6

4 (a) Scales: y-axis $1 \mathrm{~N}=4 \mathrm{~cm}$; x-axis $1 \mathrm{~m} / \mathrm{s} 2=4 / 5 \mathrm{~cm}$ right way round 1
Both axes labelled with quantity and unit 1
Plots to $1 / 2$ sq (-1 each error or omission, minimum mark zero) 2
Line thickness less than 1 mm and no 'blob' plots 1
Well judged best fit single straight line 1
(b) Large triangle used (> $1 / 2$ line) clear on graph 1

Interpolation to $1 / 2$ sq (if large enough triangle present) 1
Value $1.38-1.48 \quad 1$
kg and $2 / 3 \mathrm{sf} \quad 1$

5 (a) Two from:
same volume of water
same starting temperature of water
same size/shape/type beakers
same thickness/mass/volume of insulator
same room temp
(b) $\quad 64^{\circ} \mathrm{C}$ (with unit) 1
(c) $\mathrm{B} \quad 1$

