MARK SCHEME for the June 2004 question papers

0625 PHYSICS

0625/01
0625/02
0625/03
0625/05
0625/06

Paper 1 (Multiple Choice), maximum mark 40
Paper 2 (Core), maximum mark 80
Paper 3 (Extended), maximum mark 80
Paper 5 (Practical), maximum mark 40
Paper 6 (Alternative to Practical), maximum mark 40

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0625 (Physics) in the June 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	A	C	E	F
Component 1	40	36	28	22	18
Component 2	80	-	56	44	35
Component 3	80	50	28	19	14
Component 5	40	32	26	21	18
Component 6	40	32	25	21	18

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E . The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.
Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0625/01
PHYSICS
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	1

Question Number	Key	Question Number	Key
1	D	21	C
2	A	22	B
3	D	23	D
4	A	24	C
5	D	25	C
6	D	26	C
7	C	27	B
8	A	28	B
9	C	29	A
10	A	30	B
	A	31	
11	A	32	C
12	C	33	A
13	C	34	A
14		35	D
15	D	36	
16	D	37	A
17	A	38	D
18	C	39	D
19	D	40	C
20			

TOTAL 40

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/02
PHYSICS
Paper 2 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	2

NOTES ABOUT MARK SCHEME SYMBOLS

B marks	are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.
M marks	are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.
C marks	are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they have known it, e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.
A marks	are accuracy or answer marks which either depend on an M mark, or allow a C mark to be scored.
c.a.o.	means "correct answer only".
e.c.f.	means 'error carried forward'. This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f".
e.e.o.o.	means "each error or omission".
Brackets ()	around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10 , regardless of the unit given.
Underlining	indicates that this must be seen in the answer offered, or something very similar.
Un.pen.	means "unit penalty". An otherwise correct answer will have one mark deducted if the unit is wrong or missing. This only applies where specifically stated in the mark scheme. Elsewhere, incorrect or missing units are condoned.
OR/or	indicates alternative answers, any one of which is satisfactory for scoring the marks.

Page 2	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	2
QUESTION	SCHEME	$\frac{\text { TARGET }}{\underline{\text { GRADE }}}$	MARK
1 (a)	10	F	B1
(b)	division by 5 OR division by 6	F	C1
	2.0 OR 2 c.a.o	C	A1
(c)	$10 \times \operatorname{his}(\mathrm{b}) \mathrm{OR} 11 \times \mathrm{his}(\mathrm{b})$	F	C1
	20 c.a.o	C	A1

2
(a) straight vertical arrow upwards to/from rail
arrow to R of centre of rail
arrow at R.H. end of rail (within $2 \times$ width of restin
block)
(b) moment ticked

(c) | reduce weight/mass OR shorten rail, lighter rail, |
| :--- |
| thinner rail, open sideways, suitable long handle, |
| suitable 2 pulley system |

F B1
F
C1
arrow at R.H. end of rail (within $2 \times$ width of resting
F
A1
(b) moment ticked
F B1
(c) reduce weight/mass OR shorten rail, lighter rail,
F
suitable 2 pulley system

3
(a) PQ or 0-50s or the horizontal part

F
B1
NOT just P or just Q
(b) changing speed (however indicated) NO e.c.f from

F
B1
(a). ACCEPT "acceleration" but NOT "increasing speed"
(c) distance $=$ area indicated in words or figures

F
B1 anywhere in (c)
(i) 20×50

1000
F
C1

F

A1

(ii) $1 / 2 \times 20 \times 50$ OR $1 / 2 \times$ his(i)

C
C1
500
C
A1
(iii) his(i) + (ii) correctly evaluated

F
B1
(iv) his(iii)/100 OR total distance/total time stated F F 1
correct evaluation F
A1

Page 3	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	2

4
(a) (horizontal) force
F
B1 allow F distance (travelled from A to B)
FB1 condone "perpendicular" allow D OR d OR S
(b) goes faster OR less time F B1 accelerates CB1
(c) (i) $\quad 2^{\text {nd }}$ person (however expressed)FB1
(ii) more work/energy OR bigger force OR pulls

F B1 harder
smaller time OR greater speed

C B1
("more work/second" gets B1, B1) 7
5 (a) drops OR decreases OR cools down F B1
(b) idea of loss of molecules (from surface) OR F M1 molecules evaporatemore energetic/faster moleculesC A1(SPECIAL CASE remaining molecules slower B1)
(c) any sensible example where cooling is noticeable C B1 e.g. (feeling cold) after swimming, sweating, 4 refrigerators

6 (a) (increased) internal energy OR (increased) KE of
Cmolecules OR (increased) thermal/heat (energy)
(b) any mention of thermal capacity C C1
smaller thermal capacity C $\frac{\mathrm{A} 1}{3}$

(a) light wave fastest ()	2F	B1+B1	
	water wave slowest)		
(b) longitudinal	F	B1	
	transverse	C	B1
	transverse	F	B1
(c) light wave ticked	use $r+x=0$ if extras	F	$\underline{B 1}$

Page 4	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	2

8

A	magnet OR magnetised
B	magnet OR magnetised
C	iron OR unmagnetised
D	aluminium

$F \quad B 1$
F B1
C
B1
D aluminium
C
$\frac{B 1}{4}$

9 (a) points plotted correctly ($\pm 1 / 2$ small square $)$
3F
B3 (-1 eeoo)
(b) smooth curve through points by eye, not too thick

F \quad B1
(c) correct construction lines shown

C \quad B1
(allow dot on curve at correct place)
correct value from his graph, based on 800-400
F
B1 ($\pm 1 / 2$ square)
(d) (i) smaller

F
B1
(ii) the same OR no change

C $\quad \underline{B 1}$
8

10
(a) (i) less turns on secondary

F
B1
ACCEPT "because $\mathrm{Np}=4800$ and $\mathrm{Ns}=200$ "
ACCEPT "sycoil < pycoil"
NOT "secondary < primary"
(ii) $\quad V_{2} / V_{1}=N_{2} / N_{1}$ in any form
correct substitution
10
(iii) 1. decreases

F
B1
2. runs slower $O R$ will not work e.c.f. from

F
B1
(iii)1.
(b) ignore stage 1
from stage 2 onwards......

B	$)$			
E	$)$	$(3$ marks for any 3)		
A	$)$	$(2$ marks for any 2)	$3 C$	$\underline{B 3}$
D	$)$	$(1$ mark for any 1)	$\underline{9}$	

Page 5	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	2

11 (a) (i) thermistor
F
B1
(ii) variable resistor (accept rheostat)

F
B1
(iii) light-dependent resistor

F
B1 (ACCEPT LDR)
$\begin{array}{lll}\text { (b) (i) } \quad \begin{array}{l}\text { 1. resistance }=\text { p.d./current } \mathrm{OR} \mathrm{R}=\mathrm{V} / \mathrm{I} \\ \text { OR any correct reorganization }\end{array} & \mathrm{F} & \mathrm{B} 1\end{array}$
ACCEPT mixture of words and letters
2. 12/0.5 OR correct sub in his 1, if shown \quad F1

24 c.a.o F
A1
Ω OR ohm C
B1
(ii) 1. decreases F
2. idea of greater resistance F

B1
3. dimmer OR does not glow/work/shine NOTE: NO e.c.f. in (ii)

C10

12 (a) (i) beard tip to dot perpendicular to mirror (by
F
B1 eye)
distance beard tip to mirror $=$ dist. mirror to
F
B1 dot (by eye)
(ii) reflected ray along line from eye to his dot (by eye)
incident ray from beard tip to join reflected ray at mirror
arrows from beard to eye
C
B1
(iii) virtual

C
B1
(iv) angle of incidence = angle of reflection OR

F
B1 $i=r$ OR "they are equal" OR "sini = sinr"
(b) (i) right hand

F
B1
(ii) mark shown under L.H. eye on Fig. 11.2

F
$\begin{array}{r}\mathrm{B} 1 \\ \underline{9} \\ \hline\end{array}$

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0625/03
PHYSICS
Paper 3 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	3

1
(a) (i) Acceleration / increase in speed

Uniform / constant or in a straight line A1
(ii) Uniform speed B1

Velocity changes / motion in a circle / accelerates
B1
Similarity: same value / $6 \mathrm{~m} / \mathrm{s}$ or velocity changing
B1
Difference: opposite directions / up at E, down at C
B1
C1
60 m
A1
(ii) 6×52

C1
312m
A1
4
[10]
2 (a) 750 N
A1
(b) p.e. lost / converted $=$ mgh or weight x height

C1
750×15 or $75 \times 10 \times 15=11250(\mathrm{~J})$
p.e. lost $=$ k.e. gained $=11250(\mathrm{~J})$

C1
A1
(c) Any 3 of: heat in water / rock
(kinetic) energy of (moved) water / to make water move/ make waves
some k.e. still in (sinking) rock
sound energy on impact / of splash
B3
(just heat and sound C1)
(a) (i) Extension proportional to load however expressed B1
(ii) Any relevant arithmetic to show direct proportion (or

B1 straight line graph with values)
(b) (i) Work done $=$ force \times distance $/ 400 \times 0.210$ C1 84.0 J A1
(ii) (total) work/time or $(24 x)$ 84/60 (apply e.c.f from (i)) 33.6 W

4 (a) Water molecules at higher temps. have higher (av) k.e.
/ energy
Higher energy molecules (have greater chance to) escape the surface
Higher energy molecules have energy to break liquid "bonds" or separate liquid molecules or more
evaporation at $85^{\circ} \mathrm{C}$ (lowers level)

3
(b) Heat for evaporation $=34500-600=(33900)$ C1
Sp. latent heat of evaporation = heat/mass evap. or 33900 / 15
$2260 \mathrm{~J} / \mathrm{g}$ (method and working correct, but no heat loss used, 2/3)

Page 2	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	3

5 (a) (i) Thermopile / thermocouple / (blackened) thermometer / infra red detector or use ammeter / voltmeter in supply circuit

(ii) One of: same distance of plate to detector or use two
identical detectors or same time (after switching on)

B1
(iii) Dull black better radiator / radiates more than silver / or
emits more heat / radiation
(iv) Infra red (i.r.)

A1
(b) any correct example e.g. heating water or chimney current clear and complete direction shown correctly by arrows

4

3

[7]

6 (a) (i) Refraction at Q approx. correct, ray emerge from $A B$ parallel PQ

B1
(ii) Angle of incidence correctly marked B1 Angle of refraction correctly marked B1
(can score even if incorrect / no refraction shown)
3
(b) (i) Refractive index = speed in air / speed in glass

B1
(ii) Refractive index $=\left(3 \times 10^{8} / 2 \times 10^{8}\right)=1.5$

B1
(c) (i) Wavelength $=\mathrm{v} / \mathrm{f}$ or $3 \times 10^{8} / 6 \times 10^{14}$

Wavelength $=5 \times 10^{-7} \mathrm{~m}$
C1
A1
2
[7]
7
(a) $\quad C, R, C, R, C, R$ marked (or v.v.) along $X Y$
(b) (i) Above normal / high air pressure or particles close together
(ii) Below normal / low pressure or particles further apart

B1
2
(c) Oscillation / vibration of particles / molecules (or particles / molecules move to and fro)

B1 Oscillation is along XY

B1
(d) \quad Time $=$ distance $/$ speed or (2x) 50/340

C1
Time $=0.29 \mathrm{~s}$

Page 4	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	3

PAPER TOTAL = [80]

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0625/05
PHYSICS
Practical

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	5

1.
```
units, \({ }^{\circ} \mathrm{C}, \mathrm{mm}\)1
```

6 sets 1
evidence of θ to $1^{\circ} \mathrm{C}$, temps not decreasing 1
Graph:
temp axis, labeled with symbol and unit, suitable scale 1
plots to $1 / 2$ small sq (-1 each error or omission) 2
line judgement (best fit curve) 1
line thickness (penalise large plots here also) 1
room temp estimate lowest value or lower as justified by graph line 1
explanation from graph 1
2.
units V, A and Ω 1
3 sets of readings 1
all V to at least 1 dp 1
first R value correct 1
all R to $2 / 3$ sf 1
R values decreasing 1
Third R approx $0.5 \times$ second R (allow from $0.25 x$ to $0.75 x$) 1
Diagram:
lamps correct 1
voltmeter correct 1
ammeter correct 1
TOTAL 10
3. units for d, t and T, cm (or mm or m), s, s 1
3 sets complete 1
6 sets complete 1
T values correct 1
consistent dp for t (OR all T to 2 sf OR all T to 3 sf) 1
T values (decreasing as decreases) 1Diagram:Clear diagram showing method (using slot in mass or using diamter)2(award 1 mark for adequate diagram, i.e. correct idea but notclear enough for a student to follow without any additionalverbal instruction)
Statement NO 1
Reason, T/d not constant 1

Page 2
Mark Scheme
Syllabus
Paper
PHYSICS - JUNE 2004
4. First column only:
x and y present and sensible (25 to 50 cm) whether or not unit is shown 1 y / x correct
h present and sensible 1
m correct
1
y / x and m both between 1 and 2
1
h and y both units present and consistent values
1
Whole of table:
new y values decreasing 1
y / x and m values decreasing 1
y / x and m values all with no unit $\quad 1$
$y / x=m$
1
TOTAL 10
PAPER TOTAL = [40]

INTERNATIONAL GCSE

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 0625/06
PHYSICS
Alternative to Practical

Page 1	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	6

1
(a) $\quad 0.63-0.65(\mathrm{~A})$ (strictly)
$1.64-1.66$ (V) (strictly) 1
3.32 (g) 1
$150\left(\mathrm{~cm}^{3}\right)$ 1
8 (mm) or 0.8 (cm) 1
All units correct 1
(b) Remove electrodes from beaker 1
A method to ensure gap remains the same 1(or other suitable suggestion e.g. measurement arrangement thatthe beaker sits on)
(c) New variable (e.g. temperature, surface area / vol / size of electrodes, power source setting, depth of immersion) 1
TOTAL 9
2 (a) All T values correct ($0.34,0.44,0,49,0.53,0.60,0.63$) 1
All T values to 2 sf OR all to 3 sf 1
(b) Graph:
Scales suitable 1
Scales labeled and with units 1
Plots correct to $1 / 2$ sq (-1 each error) 2
Line judgement 1
Line thickness (and small, neat plots) 1
(c) $\quad T=0.51$ (s) correct answer only; NO ecf 1
(d) Statement: NO 1
Reason: line not through origin (or equivalent) 1
(allow mark if candidate describes str. line or constant gradient)
TOTAL 11
3 (a) Correct voltmeter 1
Correct ammeter 1
(b) $\quad \mathrm{R}=3.3,2 / 3 \mathrm{sf}$ 1
Unit Ω or ohm 1
(c) Circuit with correct parallel connections 1
Ammeter and ONE voltmeter correct 1
Variable resistor correct 1

Page 2	Mark Scheme	Syllabus	Paper
	PHYSICS - JUNE 2004	0625	6

4 (a) (i) $x=14-16 m m$ 1
(ii) $y=76.5-78.5 \mathrm{~mm}$ 1
(iii) $u=75 \mathrm{~mm}$ (ecf) and $v=390 \mathrm{~mm}$ (ecf) 1
x, y, u and v all correct and with no unit 1
(iv) $m=5.2$ (ecf) $2 / 3$ sf and with no unit 1
(b) Upside down 1
Precaution 1 1
Precaution 2 1(e.g. repeats, use mark on block supporting lens to show centre oflens, place metre rule on bench to take readings or clamp rule inposition, use a dark area, explanation of how to avoid parallaxerror, vertical screen/lens/both, centres of lens and object in line)
TOTAL 8
5 (a) 22 1
(b) (i) 14 (ecf) 1
(ii) 64 1
units all correct 1
(c) So that heat is not lost (wtte) 1
TOTAL 5

