## MARK SCHEME for the May/June 2006 question paper

## 0625 PHYSICS

0625/03
Paper 3, maximum raw mark 80

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | IGCSE - May/June 2006 | 0625 | 03 |

(a) point 8,12 identified B1
straight line joining 0,0 and 8,12 B1
straight line joining 8,12 and 20,12
B1
(b) acceleration $=$ change in $\mathrm{v} /$ change in t or $12 / 8$ etc

$$
=1.5 \mathrm{~m} / \mathrm{s}^{2}
$$

C1
A1
(c) distance $=$ area under graph between $\mathrm{t}=20$ and $\mathrm{t}=25$

$$
=24 \mathrm{~m} \text { to } 28 \mathrm{~m}
$$

(d) $\mathrm{F}=\mathrm{ma}$ or $4000 \times 1.2$
$=4800 \mathrm{~N}$
(e) more passengers got on (so mass increased)
driver pressed accelerator less (so force decreased)
more traffic or going uphill
any two lines
B2 2

2 any closed triangle or parallelogram
C1
forces in correct directions relative to each other C1 correct resultant indicated C1 resultant 7.7 N to 8.1 N A1 scale stated B1 resultant vertically upwards

3 (a) work $=$ force $x$ distance
$=$ force of gravity/weight $x$ (vertical) distance/height
C1

$$
\text { work }=(100 \times 8)=800 \mathrm{~J}
$$

(b) (i) work $=(100 \times 8)=800 \mathrm{~J}$
(ii) power $=(800 / 5)=160 \mathrm{~W}$
(iii) increases the k.e. of the water (ignore heat/sound)

4 (a) on surface/throughout; no bubbles/bubbles; all temps./b.p.;
s.v.p. < at. pressure; $\operatorname{svp}=$ at. pressure any two

B2 2
(b) energy/work to separate molecules

B1
(against) forces of attraction between water molecules
B1 2
(to break bonds C1)
The k.e./speed of the molecules does not increase
B1 1
(c) $\mathrm{Wt}=\mathrm{mL}$ or $120 \times 1=0.05 \times \mathrm{L}$

C1
$L=120 / 0.05$
C1
$\mathrm{L}=2400 \mathrm{~J} / \mathrm{g}$

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | IGCSE - May/June 2006 | 0625 | 03 |

5
(a) increase surface area of tank B1
blow air over surface/put in windy place B1
(b) (i) capillary tube longer or liquid with lower expansivity B1
(ii) capillary tube thinner/finer or liquid with higher expansivity or bigger bulb

B1 2
(c) $\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}$ or $1 \times 10^{5} \times 150=\mathrm{p}_{2} \times 50$ C1
$\mathrm{p}_{2}=3 \times 10^{5}(\mathrm{~Pa})$ A1

6 (a) red ray refracted away from normal
B1
violet ray refracted more than red ray in prism B1
violet ray further refracted from red ray to screen
B1
(b) $1.52=\sin 40 \% \sin r$

M1
$\sin r=\sin 40^{\circ} / 1.52(=0.423) \quad$ C1
$r=25^{\circ}$ A1
(c) (i) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ A1
(ii) same as (i)
(a) Longitudinal or pressure waves
(b) a correct $C$ marked

B1
a correct R marked
B1
(c) oscillation/vibration/backwards and forwards

M1
along PY (consider pressure waves as alternative)
A1
(d) wavelength $=340 / 200$
$\mathrm{PX}(=\lambda / 2)=0.85 \mathrm{~m}$
(a) $\quad \mathrm{I}=\mathrm{W} / \mathrm{V}$ or $9 / 6$
$\mathrm{I}=1.5 \mathrm{~A}$
(b) (i) 80 hm

$$
\text { (ii) } 6 \mathrm{~V}
$$

(c) (i) brightness decreases/dimmer
(ii) resistance of circuit greater B1 current through lamp falls B1
(d) (i) 40 ohm
(ii) 40 ohm

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | IGCSE - May/June 2006 | 0625 | 03 |

9
(a) primary and secondary coils on iron core labelled B1 240 V a.c. to primary, 12 V a.c. to secondary B1
turns ratio shown or stated 20:1, stepdown B1
(b) (i) must be constantly changing magnetic field B1
(ii) magnetic field of primary passes through core to secondary B1 magnetic field of secondary cuts coil, induces output B1
(c) (i) 18 WA1
(ii) 540 J A 1

10 (a) bring rod close but not touching plate
touch metal plate with earth lead M1
remove lead and then rod A1
(b) (i) $\quad \mathrm{Q}=20(\mathrm{~mA}) \times 15(\mathrm{~s}) \quad \mathrm{C} 1$
(ii) $\quad V=20(\mathrm{ma}) \times 10(\mathrm{k} \Omega)$ C1

$$
=200 \mathrm{~V}
$$

11 line1 into paper B1
positive or +2
B1
line 2 out of paper or opposite of line $1 \quad$ B1
negative or -1
B1
line 3 no deflection B1
no charge

