MARK SCHEME for the October/November 2006 question paper

0625 PHYSICS

0625/03 Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0625	03

1 (a) (i) $\mathrm{t}=\mathrm{v} / \mathrm{g}$ or $32 / 10$
$=3.2 \mathrm{~s}$
$\begin{array}{ll}\text { (ii) straight line starting at zero, inclined } & \text { C1 } \\ \text { line joining } 0,0 \text { and } 3.2,32 \text {, accept c.f. from time (i) }\end{array}$
(iii) 2.4 kg A1
(b) (i) take volume of water before use B1
(totally) immerse stone and take new volume B1 (Not clearly measured before and after C1)
(ii) hang rock from balance and take reading B1
(iii) density $=$ mass/volume B1
(iii) density $=$ mass/volume B1
(iv) need to tie "sinker" or cork or press cork down
need volume with sinker then volume with sinker and cork or just completely submerge cork
[Total: 11]
2 (a) limit of proportionality (allow elastic limit)
(b) force is proportional to extension or in terms of doubling

B1
(c) (up to Q extension proportional to force applied) Q to R extension/unit force more however expressed B1
(d) $\mathrm{k}=$ force/extension or 8/2 or other correct ratio

$$
=4.0 \mathrm{~N} / \mathrm{mm}
$$

(a) p.e. lost $=m g h$ or $1 \times 10 \times 7$

$$
=70 \mathrm{~J}
$$

(b) $70=0.5 \times m \times v^{2}$ or ecf C1
$V^{2}=140$ or $2 \times$ p.e. C1
$v=12 \mathrm{~m} / \mathrm{s}$ A1
(c) some p.e. changed to heat/sound/either one/work done against air resistance air/resistance acts against the motion
(a) (i) 1 is $20^{\circ} \mathrm{C}$

2 is $15 \pm 1^{\circ} \mathrm{C}$, need both correct for a mark
(ii) more heat lost at higher temperature
(b) heat in $=60 \times 210$ or Wt or 12600 (J)

C1
heat in water $=m \times s \times \Delta \theta$ or $75 \times s \times 40$
$s=12600 / 75 \times 40$ C1

$$
=4.2 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}
$$

(c) outline correct, two wires with clear junction and a meter/datalogger/computer

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0625	03

5
(a) (i) conduction B1
(ii) particles/atoms/ions vibrate or electrons move and carry energy B1 pass on energy from one particle to the nextB1

(b) four surfaces facing one heat source B1
suitable detector e.g. thermometer behind surface-read all 4 B1
precaution e.g. equal distance/time B1(Can not score last two marks if experiment is totally wrong)

6 (a) completed path
(b) any two correct, -1 each incorrect
virtual, inverted, same size as object
(c) angle of incidence zero/at right angles/along normal
(d) $1.5=\mathrm{Va} / \mathrm{Vg}=3 \times 10^{8} / \mathrm{Vg}$
$\mathrm{Vg}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
A1 [2]
(e) angle of incidence $=45^{\circ}$, so angle of reflection $=45^{\circ}$, so ray turns through 90°

OR angle i> angle c
B1
so totally internally reflects

7 (a) straight not circular or WTTE
waves not same wavelength/same distance apart
waves should extend into shadow area (more) any 2
(b) diagram showing large flat piece
with circular edges (ignore any wavelength changes) but straight part must be (very) nearly equal to slit width
(c) speed $=1.2 \times 8$

C1

$$
=9.6 \mathrm{~cm} / \mathrm{s}
$$

(b) (i) rheostat/variable resistance symbol drawn
(ii) dot and R in line to 12 W lamp
(c) Question deleted
(d) $\mathrm{R}=\mathrm{V} / \mathrm{I}$ or $12 / .3$
$=4 \Omega$
(e) (i) parallel circuit/all lamps connected separately across the 12 V
(ii) 4 A

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - OCT/NOV 2006	0625	03

9 (a) (i) connections one to each plate
top one to +ve, bottom one to -ve A1 (New PSU drawn C1)
(ii) electrons negatively charged B1
one plate positively charged, one negatively charged B1 electrons attracted to +/repelled by B1
time base applied to X plates stated or described B1
(b) (i) time base applied to X plates stated or described
(ii) a.c. or varying voltage applied to Y plates B1
(c) 2 full waves, (equal about centre line)

10 (a) A - resistor B - LDR C - transistor D - lamp (-1 each incorrect)
(b) C
(c) resistance of LDR low in light, high in dark
increase of resistance/potential in circuit cause transistor to conduct $\left(\mathrm{V}_{\mathrm{be}}>0.6 \mathrm{~V}\right)$ B1 switches lamp on B1 B1

11 (a) (i) atoms interact with by particle/photon not radiation B1
electron(s) removed to form ions
B1
(ii) much greater mass or size/slower speed/more ion pairs/cm/larger charge B1
(b) (i) any 2 correct B2
(ii) e.g. foil thickness described/outline diagram B1
foil too thick less reading/notes on diagram to show method
other examples will occur, must have two clear points:
e.g. 1. gamma rays aimed at cancer (not just radiation)
focused on tumour
e.g. 2. fission of heavy nucleus (accept named nuclide) leads to more fissions/chain reaction
[Total: 7]

