As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.
This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction
First variant Question Paper
Second variant Question Paper

Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?
Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

MARK SCHEME for the October/November 2008 question paper

0625 PHYSICS

0625/31
Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	31

NOTES ABOUT MARK SCHEME SYMBOLS AND OTHER MATTERS

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
c.a.o. means "correct answer only".
e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f."
e.e.o.o. means "each error or omission".
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. $10(\mathrm{~J})$ means that the mark is scored for 10, regardless of the unit given.
underlining
indicates that this must be seen in the answer offered, or something very similar.
OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.

Significant Answers are acceptable to any number of significant figures $\geqslant 2$, except if
figures specified otherwise, or if only 1 sig. fig. is appropriate.
Units It is expected that all final answers will have correct units. Deduct one unit penalty for each incorrect or missing unit, maximum 1 per question. No unit penalty if unit is missing from final answer but is shown correctly in the working.

Fractions These are only acceptable where specified.
Extras Ignore extras in answers if they are irrelevant; if they contradict an otherwise correct response or are forbidden by mark scheme, use right + wrong $=0$

Ignore Indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.

Not/NOT Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Work which has been crossed out, but not replaced, should be marked as if it had not been crossed out.

```
First variant Mark Scheme
```

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	31

1 (a) (i) any mention of force or weight ignore mass
Force to left > force to right
OR resultant force

OR unbalanced force
OR weight > friction
any 1
(ii) to overcome/compensate for friction/resistance

B1
(b) $2 / 2.5$ or $4 / 5$ etc. or F / a or $F=m a$ C1
0.8 kg A1
$\begin{array}{llll}\text { (c) } & 0.7 / 0.8 & \text { e.c.f. from (b) } & \\ & 0.875\left(\mathrm{~m} / \mathrm{s}^{2}\right) & \text { e.c.f. from (b) could be scored on table (no unit needed) } & \text { B1 } \\ & \text { B1 }\end{array}$
(d) (i) $\mathrm{v}=$ at or $0.5 \times 1.2 \mathrm{C} 1$
$0.6 \mathrm{~m} / \mathrm{s}$ A1
$\begin{array}{lll}\text { (ii) any velocity } \times \text { time or speed } \times \text { time } & \text { C1 } \\ 0.36 \mathrm{~m} \text { c.a.o. } & \text { (note: } 0.72 \mathrm{~m} \text { gets } \mathrm{C} 1, \mathrm{~A} 0) & \mathrm{A} 1\end{array}$

2 (a) two masses chosen with ratio 2:1 or 3:1 or 3:2
M1
chosen masses in correct holes to balance
A1
(b) disc does not rotate/is balanced/in equilibrium/no movement B1 NOT spin the disc NOT anything to do with calculating moments NOT when disturbed, returns to original position
(c) moment of one mass correct (ignore units) accept mass \times distance calculatedB1
equal answers B1
(d) correct addition of masses/weights, including 200g B1 any mass correctly converted to N

B1

3 (a) (i) hdg or $70 \times 1050 \times 10 \quad \mathrm{C} 1$ 735000 Pa or $7.35 \times 10^{5} \mathrm{~Pa} \quad$ accept $\mathrm{N} / \mathrm{m}^{2}$ for $\mathrm{Pa} \quad \mathrm{A} 1$
(ii) $8.35 \times 10^{5} \mathrm{~Pa}$ OR his (a)(i) $+1.0 \times 10^{5} \quad$ accept $\mathrm{N} / \mathrm{m}^{2}$ for $\mathrm{Pa} \quad \mathrm{B} 1$
(b) pressure \times area or $\mathrm{P}=\mathrm{F} / \mathrm{A}$ or $6.5 \times 10^{5} \times 2.5 \quad \mathrm{C} 1$
$1.625 \times 10^{6} \mathrm{~N}$ A1
(c) because density is less accept new calculation of pressure OR because salt water is denser

First variant Mark Scheme

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	31

4 (a) typical random path drawn, at least 3 abrupt changes of direction
(b) air molecules hit dust particles in all directions/move it in all directions just as likely to be up as down
(c) random movements smaller OR slower movement OR less energy OR movement decreases

5 (a) (i) funnel no longer giving heat to ice OR ice at M.P./constant temp OR heater reached max temp

B1
(ii) inside of large pieces could be well below freezing point) OR smaller air gaps if pieces smaller) OR better contact between heater and ice) OR to ensure heat from heater only goes to the ice) OR larger surface area Ignore ice melts faster
(b) $\left.\begin{array}{ll}\text { mass of beaker NOT mass of ice NOT mass of water } \\ \text { mass of beaker }+ \text { water } \\ \text { (apply } \checkmark+x=0 \text { for extras other than power } \& \text { time }) & \text { B1 } \\ \end{array}\right)$
(c) (mass of ice melted by heater $=16.3-2.1)=14.2 \mathrm{~g} \quad \mathrm{C} 1$
$\mathrm{m} l$ in any form, words, symbols or numbers
C1
Wt or Pt in any form, words, symbols or numbers accept VIt
$338 \mathrm{~J} / \mathrm{g}$ OR $338000 \mathrm{~J} / \mathrm{kg}$ c.a.o
A1

6 (a) light of one colour/frequency/wavelength
(b) $\mathrm{n}=\sin r / \sin i$ OR $\mathrm{n}=\sin i / \sin r$ in any form C 1
$\sin r / \sin 30=1.49 \mathrm{OR} \sin r=1.49 \times \sin 30 \quad \mathrm{C} 1$
$48.0^{\circ}-48.2^{\circ} \quad \mathrm{A} 1$
(c) ray at angle $>30^{\circ}$ and $<60^{\circ}$ to normal, by eye, correct way NO e.c.f. B1 Ignore any angles or labelling
(d) colours/spectrum would appear OR range of angles (ignore "rainbow") OR dispersion OR ray splits up B1
(e) 90° approx (accept any value 80° to 90°)
(f) (totally internally) reflected OR T.I.R. ignore not refracted B1

First variant Mark Scheme

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	31

7 (a) clear attempt at arcs of circles, at least $3 \quad$ B1
same wavelength as incoming waves, by eye (ignore shape ignore distance to first wave)

B1
centre of curvature of arcs at centre of gap, by eye B1
(b) speed/wavelength or 20/2.5 or $\mathrm{v}=\mathrm{f} \lambda \quad \mathrm{C} 1$

8 Hz or $8 \mathrm{~s}^{-1}$ or 8 waves/second A1
(c) his (b) or "the same" B1

8 (a) changes a.c. to d.c. OR rectifies a/c OR allows current to flow one way only OR prevents current flowing backward
(b) I \times t or 2×12 or $2 \times 12 \times 60 \times 60$ or amps \times seconds C1

24 Ah or 86400 C or 86000 C
(c) \quad emf $=\mathrm{J} / \mathrm{C}$ OR energy converted/work done per unit charge/coulomb OR W/A OR volts/p.d. when no current in circuit
12 J of energy are delivered/needed for every coulomb of charge OR 12 W is the power to drive a current of 1 A
(d) (i) series connection shown, any recognisable symbols B1
(ii) total power = 16 W OR 8/6 C1
1.33 A accept fraction c.a.o. A1
(iii) any power \times any time or $16 \times 60 \times 60$ or IVt or $8 \times 60 \times 60$ C1

57600 J or 0.016 kWh or 28800 J or 0.008 kWh
A1

9 (a) pump water to higher level storage) or heat water
or charge accumulators/batteries ignore charge capacitor NOT generator
(b) less/no energy/power/heat loss OR to reduce current OR to allow thinner cables OR more efficient NOTHING ELSE
(c) $I^{2} R$
(d) $\mathrm{N}_{s} / 1200=32000 / 1100 \mathrm{OR} \mathrm{N}_{1} / \mathrm{N}_{2}=\mathrm{V}_{1} / \mathrm{V}_{2}$ in any arrangement C 1 34880 or 34900 or 34909 or 34910 or 35000
(e) input power = output power or $\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2} \quad \mathrm{C} 1$ current = power/voltage in any form, words, symbols or numbers C1 25 A

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	31

10 (a) (i) LDR correctly identified B1
(ii) lamp correctly identified B1
(iii) transistor correctly identified B1
(b) (ignore anything that is in terms of currents) resistance of LDR becomes high M1
LDR gets larger share of the voltage OR voltage across LDR gets bigger A1
transistor switches/turns lamp on A1

11 (a) A cathode OR electron gun
B Y plates OR vertical deflection plates
C $\quad \mathrm{X}$ plates OR horizontal deflection plates
D screen OR fluorescent/phosphor OR tube NOT glass 4 correct B2, 3 or 2 correct B1
(b) A; idea of releasing electrons/thermionic emission B1
B; move the electron beam vertically B1
(c) (i) y-plates/y-input or B NO e.c.f. B1
(ii) x-plates/x-input or C NO e.c.f. B1

MARK SCHEME for the October/November 2008 question paper

0625 PHYSICS

0625/32
Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	$\mathbf{0 6 2 5}$	32

NOTES ABOUT MARK SCHEME SYMBOLS AND OTHER MATTERS

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.
M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
c.a.o. means "correct answer only".
e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f."
e.e.o.o. means "each error or omission".
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. $10(\mathrm{~J})$ means that the mark is scored for 10 , regardless of the unit given.
underlining indicates that this must be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.
Significant Answers are acceptable to any number of significant figures $\geqslant 2$, except if
figures specified otherwise, or if only 1 sig. fig. is appropriate.
Units It is expected that all final answers will have correct units. Deduct one unit penalty for each incorrect or missing unit, maximum 1 per question. No unit penalty if unit is missing from final answer but is shown correctly in the working.
Fractions These are only acceptable where specified.
Extras Ignore extras in answers if they are irrelevant; if they contradict an otherwise correct response or are forbidden by mark scheme, use right + wrong $=0$
Ignore Indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.

Not/NOT Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Work which has been crossed out, but not replaced, should be marked as if it had not been crossed out.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	32

1 (a) idea of accelerating force/force down slope $=$ friction force OR no resultant force/forces balanced (accept energy argument if Physics correct)
(b) (i) idea of accelerating force/force down slope $>$ friction force OR forces unbalanced B1 (accept energy argument if Physics correct)
(ii) $\mathrm{F}=\mathrm{ma}$ NOT $f \alpha a$ B1
$\begin{array}{ll}\text { (iii) } & 12 \times 2 \\ 24 \mathrm{~N} & \mathrm{C} 1 \\ \mathrm{~A} 1\end{array}$
(c) (i) resultant force $=38 \mathrm{~N}$ OR his (b)(iii) +14

C1
38/12 OR (his (b)(iii) + 14)/12
C1
$3.166 \mathrm{~m} / \mathrm{s}^{2}$ or $3.17 \mathrm{~m} / \mathrm{s}^{2}$ or $3.2 \mathrm{~m} / \mathrm{s}^{2}$ NOT 3.16 e.c.f. A1
(ii) $\quad v=$ at or 3.2×2.5 e.c.f. C 1
$7.8-8.0 \mathrm{~m} / \mathrm{s}$ e.c.f.
(d) idea of acceleration

B1

2 (a) two masses chosen with ratio $2: 1$ or 3:1 or 3:2
M1
chosen masses in correct holes to balance
A1
(b) disc does not rotate/is balanced/in equilibrium/no movement

NOT spin the disc NOT anything to do with calculating moments
NOT when disturbed, returns to original position
(c) moment of one mass correct (ignore units)
accept mass \times distance calculated
B1
equal answers
B1
(d) correct addition of masses/weights, including 200 g 1 any mass correctly converted to N

B1

3 (a) (i) hdg or $70 \times 1050 \times 10 \quad \mathrm{C} 1$

$$
735000 \mathrm{~Pa} \text { or } 7.35 \times 10^{5} \mathrm{~Pa} \quad \text { accept } \mathrm{N} / \mathrm{m}^{2} \text { for } \mathrm{Pa} \quad \mathrm{~A} 1
$$

(ii) $8.35 \times 10^{5} \mathrm{~Pa}$ OR his (a)(i) $+1.0 \times 10^{5} \quad$ accept $\mathrm{N} / \mathrm{m}^{2}$ for $\mathrm{Pa} \quad \mathrm{B} 1$
(b) pressure \times area or $\mathrm{P}=\mathrm{F} / \mathrm{A}$ or $6.5 \times 10^{5} \times 2.5 \quad \mathrm{C} 1$
$1.625 \times 10^{6} \mathrm{~N} \quad \mathrm{~A} 1$
(c) because density is less accept new calculation of pressure OR because salt water is denser

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	32

4 (a) typical random path drawn, at least 3 abrupt changes of direction
(b) air molecules hit dust particles in all directions/move it in all directions just as likely to be up as down
(c) random movements smaller OR slower movement OR less energy OR movement decreases

5 (a) (i) funnel no longer giving heat to ice OR ice at M.P./constant temp OR heater reached max temp
(ii) inside of large pieces could be well below freezing point)

OR smaller air gaps if pieces smaller) any 1 B1 OR better contact between heater and ice) OR to ensure heat from heater only goes to the ice) OR larger surface area) Ignore ice melts faster
(b) mass of beaker NOT mass of ice NOT mass of water B1 mass of beaker + water B1 (apply $\checkmark+x=0$ for extras other than power \& time)
(c) (i) $\mathrm{Pt} / \mathrm{Wt}$ in any form, words, symbols or numbers C 1
$\mathrm{mc} \theta$ in any form, words, symbols or numbers C1
4.88 or $4.9 \mathrm{~J} /(\mathrm{gK})$ or $\mathrm{J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$ or $\mathrm{J} /(\mathrm{gdegC})$ condone no brackets A1

Or 4880 or $4900 \mathrm{~J} /(\mathrm{kgK})$ etc. accept double solidus in unit
(ii) heat lost/gained OR impurities in water B1

6 (a) (i) light of one colour/frequency/wavelength
B1
(ii) $\mathrm{n}=\sin r / \sin i$ OR $\mathrm{n}=\operatorname{sini} / \sin r$ in any form

C1
$1.33=\sin r / \sin 40$ OR $\sin r=1.33 \times \sin 40 \quad$ C1
Any value between $58.68^{\circ}-60^{\circ}$ inclusive A1
(iii) ray correct, by eye, bent away from normal ignore any arrows or labelling NO ecfB1
(b) (i) reflected (at B) or T.I.R. NOT deflects/refracts M1
angle of incidence bigger than critical angle or 50° is bigger than $48.8^{\circ} /$ C.A.
(ii) ray correct, by eye, with no refracted part ignore any arrows B1

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	32

7 (a) clear attempt at arcs of circles, at least $3 \quad$ B1
same wavelength as incoming waves, by eye (ignore shape ignore distance to first wave) B1 centre of curvature of arcs at centre of gap, by eye B1
(b) speed/wavelength or $20 / 2.5$ or $\mathrm{v}=\mathrm{f} \lambda$ C1
8 Hz or $8 \mathrm{~s}^{-1}$ or 8 waves/second A1
(c) his (b) or "the same" B1

8 (a) changes a.c. to d.c. OR rectifies a/c OR allows current to flow one way only OR prevents current flowing backward
(c) \quad emf $=\mathrm{J} / \mathrm{C}$ OR energy converted/work done per unit charge/coulomb OR W/A OR volts/p.d. when no current in circuit
12 J of energy are delivered/needed for every coulomb of charge OR 12 W is the power to drive a current of 1 A
(d) (i) series connection shown, any recognisable symbols B1
(ii) total power = 16 W OR 8/6 C 1
1.33 A accept fraction c.a.o. A1
(iii) any power \times any time or $16 \times 60 \times 60$ or IVt or $8 \times 60 \times 60$ C1

57600 J or 0.016 kWh or 28800 J or 0.008 kWh
A1

9 (a) pump water to higher level storage or heat water
)) any one or charge accumulators/batteries B1 ignore charge capacitor NOT generator
(b) less/no energy/power/heat loss OR to reduce current OR to allow thinner cables OR more efficient NOTHING ELSE
(c) $I^{2} R$
(d) $\mathrm{N}_{\mathrm{s}} / 1200=32000 / 1100$ OR $\mathrm{N}_{1} / \mathrm{N}_{2}=\mathrm{V}_{1} / \mathrm{V}_{2}$ in any arrangement C1 34880 or 34900 or 34909 or 34910 or 35000 A1
(e) input power = output power or $\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2} \quad \mathrm{C} 1$ current $=$ power/voltage in any form, words, symbols or numbers C1 25 A

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2008	0625	32

10 (a) (i) LDR correctly identified B1
(ii) lamp correctly identified B1
(iii) transistor correctly identified B1
(b) (ignore anything that is in terms of currents) resistance of LDR becomes high M1
LDR gets larger share of the voltage OR voltage across LDR gets bigger A1
transistor switches/turns lamp on A1

11 (a) A cathode OR electron gun
B Y plates OR vertical deflection plates
C $\quad \mathrm{X}$ plates OR horizontal deflection plates
D screen OR fluorescent/phosphor OR tube NOT glass 4 correct B2, 3 or 2 correct B1
(b) A; idea of releasing electrons/thermionic emission B1
B; move the electron beam vertically B1
(c) (i) y-plates/y-input or B NO e.c.f. B1
(ii) x-plates/x-input or C NO e.c.f. B1

