MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0625 PHYSICS

0625/31
Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	31

Notes about Mark Scheme Symbols and Other Matters

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
c.a.o. means "correct answer only".
e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f."
e.e.o.o. means "each error or omission".
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	31

1 (a) decreases / braking / decelerating constant / steady / nothing) increases / accelerate)

```
) all 3
```B1
(b) speed \(x\) time in any form, symbols, numbers or words OR any area under graph used or statedC1
\(13(\mathrm{~m} / \mathrm{s})\) OR 24 (s) seen or used in correct context C1
312 m A1
(c) rate of change of speed OR gradient of graph OR 18/12 C1
\(18(\mathrm{~m} / \mathrm{s})\) OR 12 (s) seen or used in correct context C1
\(1.5 \mathrm{~m} / \mathrm{s}^{2}\) A1
(d) same gradient / slope OR equal speed changes in equal times OR allow graph symmetrical B1

2 (a) \(1 / 2 \mathrm{mv}^{2}\) OR \(1 / 2 \times 900 \times 30^{2} \quad \mathrm{C} 1\) 405000 J A1
(b) force x distance OR \(2000 \times 30\) C1
60000 J OR 60 kJ A1
(c) 60000 W OR \(60000 \mathrm{~J} / \mathrm{s}\) OR 60 kW OR \(60 \mathrm{~kJ} / \mathrm{s}\) ecf from (b) B1
(d) chemical B1
(e) idea of energy loss / heat / sound / inefficiency / energy used within car / possibility of increase in P.E. Ignore work done against against friction B1

3 (a) \(2^{\text {nd }}\) statement re-written to include force in first gap and inversely proportional to mass in second gap. NOT indirectly proportional
(b) \(\mathrm{F}=\mathrm{ma} \mathrm{OR}\) in words in any correct arrangement B1
(c) (i) nothing OR continues as before OR same / constant velocity OR same / constant speed \& direction OR no acceleration B1
(ii) idea of retardation. Ignore stop. Ignore brakes. Ignore goes in opposite direction B1
(iii) moves in (arc of a) circle or curve OR deflected OR turns OR changes direction B1
\begin{tabular}{|c|c|c|c|}
\hline Page 4 & Mark Scheme: Teachers' version & Syllabus & Paper \\
\hline & IGCSE - May/June 2010 & 0625 & 31 \\
\hline
\end{tabular}

4 (a) matt black
(b) (i) \(L\) down and \(R\) up, equal amounts (by eye)
B1
(ii) on black side or on left (more) energy / heat absorbed OR greater temp rise OR heats up quicker
on black side or on left greater expansion of air / greater pressure of air
B1

5 (a) energy / heat required to change state / phase / any example of change of state / phase
with no change in temperature / at a specified temperature A1
OR energy to break bonds between molecules /atoms M1
with no change in K.E.
A1
(b) any time or range of time between \(1.6(\mathrm{~min})\) and \(14.0(\mathrm{~min})\) inclusive [no UP]
(c) turns substance to gas / vapour OR causes evaporation OR escape from liquid
energy to break bonds/separate molecules/overcome intermolecular forces Ignore move faster / PE increases
\(\begin{array}{lll}\text { (d) (i) } \mathrm{Pt} / 2 \times 4 / 2000 \times 4 / 2 \times 240 / 2000 \times 240 / 8 / 8000 / 480 / 480000 & \mathrm{C} 1 \\ 480000 \mathrm{~J} \text { OR } 480 \mathrm{~kJ} & \mathrm{~A} 1\end{array}\)
(ii) \((\theta=) 43\left({ }^{\circ} \mathrm{C}\right)\) seen anywhere C 1
\(Q=m c \theta\) OR \(480000=m \times 1760 \times 43\) in any form ecf. from (i) C1
6.34 kg or 6.3 kg ecf. A1

6 (a) (i) same / unchanged / nothing B1
(ii) reduced / slows down B1
(iii) reduced B1
(b) \(\mathrm{v}=\mathrm{f} \lambda\) in any form or in words [not numbers]

OR \(f=1 / T\) in any form or in words [not numbers] B1
\(0.12=f \times 0.08\) OR T \(=0.08 / 0.12\)
C1
\(1.5 \mathrm{~Hz} /\) cycles per sec / c.p.s. / per s [only 2 marks if B1 mark above not scored] A1
\begin{tabular}{|c|c|c|c|}
\hline Page 5 & Mark Scheme: Teachers' version & Syllabus & Paper \\
\hline & IGCSE - May/June 2010 & 0625 & 31 \\
\hline
\end{tabular}
(c)

(ignore length of waves)
waves bending in correct direction (be generous)
M1
A and B correct by eye, straight and parallel
\(C\) and \(D\) parallel to \(A\) and \(B\) by eye
A1

7 (a) idea of light travelling (much) faster than sound
(b) (i) 4.0 (min)
(ii) always a (measurable) time difference / never zero time difference Ignore time would be less
(iii) distance/time in any form, symbols, words, numbers OR 1200/3.6
\(333.3 \mathrm{~m} / \mathrm{s}\) to 2 or more sig figs
(iv) idea of light travelling instantaneously OR no wind OR idea of lightning at ground level OR no obstruction to sound Ignore echoes
(c)
\begin{tabular}{|l|c|c|}
\hline & light waves & sound waves \\
\hline longitudinal & & \(\checkmark\) \\
\hline transverse & \(\checkmark\) & \\
\hline electromagnetic & \(\checkmark\) & \\
\hline mechanical & & \(\checkmark\) \\
\hline
\end{tabular}
-1 e.e.o.o. i.e. 1 mark subtracted from \(\underline{3}\) for each error or omission
\begin{tabular}{|c|c|c|c|}
\hline Page 6 & Mark Scheme: Teachers' version & Syllabus & Paper \\
\hline & IGCSE - May/June 2010 & 0625 & 31 \\
\hline
\end{tabular}

8 (a) (i) \(N_{1} / N_{2}=V_{1} / V_{2}\) in any form, symbols, words or numbers
C1
12 (turns) [possible unit penalty]
A1
(ii) mention of magnetic / electromagnetic field change of flux linkage / magnetism OR field lines being cut

Induced current / emf / voltage
Fewer coils in secondary so smaller emf / voltage OR larger current
(iii) heat in either coil / wires eddy currents in core / heat in core magnetic leakage from core sound from core/coil
(b) (i) 12 V d.c. OR low d.c.voltage B1
(ii) diode OR rectifier [lgnore extras unless wrong]
(c) \(\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2}\) in any form, or words or numbers

OR power in = power out or equivalent
C1
8 A
A1
[10]

9 (a) first finger - field / magnetism / flux) second finger - current / charge flow (NOT electron flow)) both B1
(b) (i) brush OR contact OR sliding connector B1
split ring OR commutator NOT slip ring B1
(ii) clockwise OR right side down OR left side up OR correct arrows on figure NOT turn to the right
(iii) more current / more voltage / "stronger battery" / more power more turns on coil / more coils stronger magnet Ignore bigger magnets closer magnet / magnetic poles more magnets iron core
\begin{tabular}{|c|c|c|c|}
\hline Page 7 & Mark Scheme: Teachers' version & Syllabus & Paper \\
\hline & IGCSE - May/June 2010 & 0625 & 31 \\
\hline
\end{tabular}

10 (a) proton number OR atomic number OR (number of) protons / electrons OR position in periodic table OR chemical properties
(b) mass (number) OR nucleon number OR (number of) neutrons / nucleons OR (number of) protons plus (number of) neutrons
(c) (i) mass (number) OR nucleon number OR (number of) nucleons OR (number of) protons plus (number of) neutrons
(ii) proton number OR atomic number OR (number of) neutrons

OR (number of) protons / neutrons / electrons
OR position in periodic table OR chemical properties
OR a neutron changes into a proton

11 (a) (i) \(4 \Omega\)
B1
(ii) IVt OR \(\quad I^{2} R t \quad O R \quad V^{2} t / R \quad\) in any form or words or numbers Condone \(t=9\) if substituted possible ecf from (i) C1 540 (s) C1 437.4 J possible ecf if \(4 \Omega\) from (i) used A1
(b) \(R=\rho L / A\) OR \(R \propto L / A\) OR \(R \propto L\) and \(R \propto 1 / A\) or \(1 / d^{2}\) or \(1 / r^{2} \quad C 1\)
\(\mathrm{A}_{2}=1 / 4 \mathrm{~A}_{1}\) OR \(\mathrm{A}_{2}=0.25 \mathrm{~A}_{1}\)
C1
\(R_{2}=(0.45 / 0.3) \times R_{1}\) OR (3/2) \(\times \mathrm{R}_{1} \quad \mathrm{C} 1\)
\(3 / 8\) OR 0.375 OR \(37.5 \%\) A1
OR
\(R=\rho L / A\) OR \(R \propto L / A\) OR \(R \propto L\) and \(R \propto 1 / A\) or \(1 / d^{2}\) or \(1 / r^{2} \quad C 1\)
Resistance of thinner wire with same length as thicker wire \(=4 \times 4=16 \Omega \quad\) C1
Actual resistance of thinner wire \(=1.8 / 0.3=6.0 \Omega \quad\) C1
Ratio: \(L\) of thinner wire \(/ L\) of thicker wire \(=6.0 / 16=3 / 8=0.375=37.5 \% \quad\) A1```

