MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0625 PHYSICS

0625/33
Paper 33 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

Notes about Mark Scheme Symbols and Other Matters

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
c.a.o. means "correct answer only".
e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f."
e.e.o.o. means "each error or omission".
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. $10(\mathrm{~J})$ means that the mark is scored for 10 , regardless of the unit given.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

1 (a) mgh in any form, numbers, words, symbols
5.4 J OR 5.297 J OR 5.292 J OR 5.3 J OR 5.29 J
(b) $1 / 2 m v^{2}$ in any form, numbers, words, symbols
(energy given by player =) 9.3 J OR his (b) - (a) correctly evaluated
(c) (i) friction with floor / inside ball OR energy to deform ball OR sound OR idea of hysteresis of rubber ignore heat / air resistance
(ii) 78% OR ratio of PEs
accept $(14.7 \times 0.78=) 11.47(\mathrm{~J}) \mathrm{OR}(0.78 \times 0.9=) 0.702(\mathrm{~m})$
3.12 m to at least 2 sig figs
(iii) idea of (some of) energy lost / becomes / converted / transferred to heat in ball ignore friction

2 (a) Mark (i) and (ii) together. Note both M1s required to score the A1 mark
(i) B
(ii) idea of greater / different (NOT less) increase in length for each additional load accept load not proportional to extension or reverse argument
at $4^{\text {th }}$ or $5^{\text {th }}$ reading / value between $2.0-2.5 \mathrm{~N} / 11.6-12.6 \mathrm{~cm}$
(b) (i) 1.0 cm

B1
(ii) 5.7 cm
(c) 2.5 (cm) OR $1.25(\mathrm{~N})$ OR $5.0(\mathrm{~cm})$ ignore 2.5 N 8.2 cm
e.c.f. from (b) if clear

C1
e.g. 10.7/2 (= 5.35) scores 0/2

A1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

3 (a) $\mathrm{M}=\mathrm{V} \times \mathrm{D}$ in any form $\mathrm{OR} 10^{3} \times 10^{-3} \quad \mathrm{C} 1$
1 kg
(b) mgh OR his (a) $\times 10 \times 0.8 \quad \mathrm{C} 1$
$8 \mathrm{~J}(\mathrm{Nm})$ OR 7.85 J OR 7.84 J e.c.f. from (a) A1
(c) $\mathrm{P}=\mathrm{E} / \mathrm{t}$ OR (his 8×90)/60 e.c.f. from (b) C1
$12 \mathrm{~W}(\mathrm{~J} / \mathrm{s}$ or Nm/s) OR 11.77 W OR 11.76 W A1
(d) pgh in any form, words, letters, numbers C1
$8000 \mathrm{~Pa}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \mathrm{OR} 7850 \mathrm{~Pa}$ OR 7840 Pa
A1

4 (a) (i) change in length / distance moved (accept "how much it expands") per unit / given temp rise OR equivalent
(ii) large bulb OR thin / narrow bore / tube / capillary NOT thin / narrow thermometer
(b) (i) difference between the highest and lowest temperatures ignore reference to fixed points
(ii) tube (sufficiently) long / not too short

OR bore wide/not too thin
OR little/not too much liquid/bulb
NOT change liquid
(c) (i) idea of equal size divisions/expansion for equal temperature rises OR $\Delta l / \Delta \theta$ constant $O R$ reference to l against θ graph straight line ignore 1 division $=1^{\circ} \mathrm{C}$
(ii) uniform bore OR alcohol/liquid expands uniformly (with temp)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

5 Ignore upthrust throughout this question
(a) paper:
drag / air resistance / friction (upwards) (seen anywhere in (a)) B1
drag /air resistance / friction = weight / force of gravity B1
no resultant (force) / forces balance / upwards force = downwards force
AND no acceleration
coin:
weight / force of gravity (always) bigger than air resistance
OR force down bigger than force up
OR air resistance hasn't time / distance to equal weight
B1
(b) fall at same speed / acceleration / rate, ignore fall at same time)
hit bottom at same time/together
paper now accelerates (all the way)) any 1
paper no longer flutters side-side
they/paper NOT coin fall(s) faster
the paper (ignore coin) hits sooner
NOT constant speed/rate
B1

6 (a) single wavelength/frequency accept single colour
(b) refraction

B1
(c) 29° unit needed

B1
(d) $n=\sin i / \sin r$ in any form OR $n=\sin r / \sin i$ in any form OR $\sin i / \sin r \quad$ C1
$\sin 45 / \sin 29 O R \sin 29 / \sin 45 \quad$ e.c.f.from (c)
C1
1.458524649 to at least 2 sig figs
c.a.o.
accept incorrect rounding of answer to more than 3 S.F.
e.g. do not accept 1.4 or 1.45 do accept 1.46 or 1.5 or 1.458
(e) (at B) greater than critical angle OR ray is totally internally reflected
less than critical angle at C
less than critical angle at \underline{C}
B1
(f) $\begin{array}{ll}\mathrm{AB} \text { continued straight by eye, to RH glass surface, drawn with ruler } & \mathrm{B} 1 \\ \text { refracted up at RH surface } & \mathrm{C} 1 \\ \text { horizontal } & \underline{\mathrm{A} 1}\end{array}{ }^{2}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

7 (a) (i) approximately $330 \mathrm{~m} / \mathrm{s}$ (correct order of magnitude)B1

(ii) $300 / 5000$ OR $t=d / v$ NOT $t=2 d / v$
C1 0.06 s A1
$\begin{array}{ll}\text { (b) sound through air and sound through steel NOT echo } & \text { B1 } \\ \text { speeds in air and steel are different NOT if faster in air } \\ \text { accept sound in steel/rail heard first } & \text { B1 }\end{array}$

8 (a) same/like/similar charges repel (ignore poles repel) B1 unlike/opposite/different charges attract (ignore poles attract) B1
(b) idea of car/person (being) charged (by friction) \quad B1
idea of charge/electrons going to/from/through person B1
(c) (i) electrons / -ve charges move towards the rod / to R (ignore just "attracted") ignore any mention of +ve charges moving any mention of +ve electrons gets B0 B1
(ii) opposite charges attract OR electrons / -ve charges attracted to $+\mathrm{ve} / \mathrm{rod}$
attraction between opposite charges > repulsion between like charges OR - ve charges (are) close(r) (to the rod)
(iii) electrons / -ve charges flow (up) from earth/wire no e.c.f. from (i) ignore +ve charges moving, NOT +ve electrons
ball becomes -vely charged

9 (a) diode
(b) (i) 2Ω
(ii) 24 OR $22+2(\Omega)$ seen
$1 / R=1 / R_{1}+1 / R_{2}\left(+1 / R_{3}\right) O R(R=) \frac{R_{1} R_{2}}{R_{1}+R_{2}}$
seen or used with any 2 resistors ignore extra resistance added to expression for R in equation C 1
$6 \Omega \quad$ A1
(c) N.B. marks may be scored anywhere in (c)
(current $=$) zero / very small M1
diode reverse biased
OR polarity wrong OR facing wrong way
OR diode only conducts R / + to L/-

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2010	0625	33

(d) use $I=V / R O R P=V I O R P=V^{2} / R$ symbols, numbers or words
use of $R=8(\Omega) \&$ correct calculation to give 2 W
OR $R=4 / 0.5=8(\Omega) O R R=4^{2} / 2=8(\Omega)$
OR any other calculation(s) using $(I=V / R \& P=V I)$ OR $P=V^{2} / R$ to deduce $8(\Omega)$
switch position B (NOTE: this is dependent on both M1s being scored)
ignore any calculations using 2Ω

10 (a) waves clearly more bunched
condone poor accuracy / shape or waves not filling screen
3 waves drawn, with first 4 half-wavelengths having $2.0(\pm 0.2) \mathrm{cm}$ interval
all waves drawn same amplitude (± 0.2) cm as original AND
at least 1 peak and 1 trough drawn
$\begin{array}{lll}\text { (b) volts } / \mathrm{cm}: & \begin{array}{l}\text { increased } / \text { any value }>5(\mathrm{~V} / \mathrm{cm}) \\ \\ \\ \text { factor of } 2 \text {, increase or decrease } / 10(\mathrm{~V} / \mathrm{cm}) / 2.5(\mathrm{~V} / \mathrm{cm})\end{array} & \text { B1 }\end{array}$
N.B. 10 (V / cm) scores B1, B1
time base: no change / $10 \mathrm{~ms} / \mathrm{cm}$
B1

11 (a) γ straight up
B1
α to left AND β to right
(b) into or out of paper

C1
into paper
A1

