MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0625 PHYSICS

0625/31
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Syllabus \quad Paper

Notes about Mark Scheme Symbols and Other Matters

B marks are independent marks, which do not depend on any other marks. For a B mark to be scored, the point to which it refers must actually be seen in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it e.g. if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows he knew the equation, then the C mark is scored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored.
c.a.o. means "correct answer only".
e.c.f. means "error carried forward". This indicates that if a candidate has made an earlier mistake and has carried his incorrect value forward to subsequent stages of working, he may be given marks indicated by e.c.f. provided his subsequent working is correct, bearing in mind his earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated "e.c.f."
e.e.o.o. means "each error or omission".
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.
underlining
indicates that this must be seen in the answer offered, or something very similar.
OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

Significant Answers are acceptable to any number of significant figures ≥ 2, except if specified figures

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question.

Fractions These are only acceptable where specified.
Extras Ignore extras in answers if they are irrelevant; if they contradict an otherwise correct response or are forbidden by mark scheme, use right + wrong $=0$

Ignore Indicates that something which is not correct is disregarded and does not cause a right plus wrong penalty.

Not/NOT Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0625	31

1 (a) all points correctly plotted $\pm 1 / 2$ small square $\quad \begin{array}{ll}\begin{array}{l}\text { B1 } \\ \text { straight line of best fit for candidate's points }\end{array} & \text { B1 }\end{array}$
(b) (i) candidate's correct value with unit (± 0.2), (expect 1.2 N) B1
(ii) remains stationary / nothing happens / no acceleration NOT constant speed B1
(c) Correct data from candidates graph for $\Delta \mathrm{F}$ and $\Delta \mathrm{m}$, used in $\Delta \mathrm{F} / \Delta \mathrm{m}$
(d) (i) $F=m a$ in any form, letters, words B1
(ii) gradient $=$ F/a OR gradient $=m$ ignore $m=F / a \quad$ C1 candidate's (c) with correct unit A1
(e) straight line of positive gradient

B1

2 (a) distance/height AND tape measure/(metre) rule(r) \quad B1 $\quad \begin{array}{cc}\text { weight OR load OR force } & \text { B1 } \\ \text { AND balance/scale(s) OR newton-meter/spring balance/force meter } & \text { B1 } \\ \text { time AND watch/clock/timer } & \text { B1 }\end{array}$
(b) power = work/time OR energy/time in any form

OR Pt words or numbers seen anywhere e.g. $528 \times 5 \quad$ C1
(work $=$) force \times distance in any form C1
11
A1
(c) efficiency $=E_{\text {out }} / E_{\text {in }}$ OR $P_{\text {out }} / P_{\text {in }}$ seen anywhere, clearly identified

OR $520 \times(20 / 11) \times 5$
OR (work done =) $800 \times 20 \times 0.3$ OR $800 \times 20 \times 30$ OR $4800(\mathrm{~J})$ OR $720(\mathrm{~J})$
C1
(energy used =) 32,000 J
A1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0625	31

3 (a) (i) smaller because area smaller B1
(ii) smaller because depth/height smaller ignore less water

B1
(b) (i) $h \rho g$ OR $12 \times 1000 \times 10 \quad \mathrm{C} 1$
$1.2 \times 10^{5} \mathrm{~Pa}$ OR $1.1772 \times 10^{5} \mathrm{~Pa}$ OR $1.176 \times 10^{5} \mathrm{~Pa}$ accept $\mathrm{N} / \mathrm{m}^{2} \quad \mathrm{~A} 1$
(ii) candidate's (i) $+1.0 \times 10^{5} \mathrm{~Pa}$ correctly evaluated with unit (correct value 2.2×10^{5})
(iii) $\begin{aligned} & p_{1} V_{1}=p_{2} V_{2} \text { in any form } \\ & 1.1 \mathrm{~cm}^{3}\end{aligned} \quad$ C1

OR $0.5 \times$ candidate's (ii)/ 10^{5} correctly evaluated A1
(iv) value in (iii) too small OR volume larger o.w.t.t.e.

4 (a) rheostat/variable resistor AND control/vary/change/ limit $\begin{aligned} & \text { rurrent /resistance/power/voltage across heater } \\ & \text { cur }\end{aligned} \quad$ B1
(b) (i) $P=V I$ in any form $O R(I=) P / V$

C1
1.25 A A1
(ii) $(R=) V / I$ in any form words or numbers \quad C1
(voltage across $\mathrm{X}=$) $2.4(\mathrm{~V}) \mathrm{OR}$ 6-3.6 (V) C1
$1.92 \Omega \quad$ e.c.f. from (b) (i) A1
(c) battery running down/going flat/energy of battery used up OR V or e.m.f. less OR more/increasing resistance (of heater) NOT resistance of X increases
(d) (i) transformer condone step-up OR potential divider/potentiometer NOT extras
(ii) diode OR rectifier OR L.E.D. NOT extras

B1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0625	31

5 (a) (i) potential difference OR e.m.f. OR voltage ignore volts
(ii) frequency accept cycles/s ignore waves/s $\}$ all 3
(iii) power accept energy/s
(b) (i) case/frame/outside/base/parts that can be touched ignore metal parts
(ii) electric shock/electrocution/death by electricity o.w.t.t.e. ignore anything else live wire touches case
(c) heaters in parallel with any supply (M0 if no supply, clear break in circuit, short across supply or heater)

OR one switch in series with each element
special case: heaters in series with supply and one switch shorting out one resistor AND another switch in series with supply

6 (a) A and C
(b) (i) 4.2×10^{10} years B1
(ii) idea of decay OR changes proton/neutron/nucleon number OR change into another nuclide/isotope/element/type of atom OR emits α / β particle (ignore $y /$ radiation)
(iii) idea of insignificant change in activity during stated time up to 5×10^{9} years OR experiment time insignificant c.f. 1.4×10^{10} years OR long half life OR long time to decay

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0625	31

7 (a) idea of fine ray/beam shone into (glass) block / pins appropriately placed shown in diagram or describedsini/sinr OR sinr/sini OR 1/sinC OR $\sin C$B1
$n=$ speed in air/speed in glass OR $c / v=\sin / / \sin r$ OR $n=1 / \sin C$ OR $c / v=1 / \sin C$ B1
(b) (i) $v=f \lambda$ OR $240 / 1.9 \times 10^{5}$ OR $T=d / s$ AND $f=1 / T$ B1 0.00126 Hz OR 0.0013 Hz NOT 0.0012 Hz ignore more than 3 s.f. accept s ${ }^{-1}$ A1
(ii) distance $=$ speed \times time in any form accept $s=2 d / t$ C1
(time for tremor =) 240 (s) or 4 mins also gives first C1 C1
(time for tsunami $=$) 2500 (s) or 41 mins 40 s also gives first C1 C1
(warning time $=$) $2260(\mathrm{~s})$ or 37 mins 40 s A1

8 (a) (i) total (internal) reflection OR reflection but no refraction/doesn't emergeangle (of incidence > critical angleB1
(ii) initial reflection + 0 or 1 further reflection only, not at lower surfacemust be straight and reach within 1 cm of endB1

(b) (i) bends easily/less likely to break (ignore stronger) OR smaller pixels/
more detail/greater resolution/see smaller objects/wider field of view B1
(ii) light travels down/along/through fibres B1
(iii) light/image returns up/along/through fibres ignore cameras B1

9 (a) (i) down
down OR anti-clockwise
$\}$ both B1
(ii) BC is parallel to the field/doesn't cut field or vice-versa/not at angle to field ignore BC not perpendicular to field
(b) continues moving/turning NOT reverse/other direction M1 idea of moving things continue moving OR reference to Newton's Laws OR reference to momentum/KE/inertia NOT reference to force still acting

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2011	0625	31

(c) more turns/several coils iron core increase current/voltage stronger magnet smaller air gap $\}$ any 1 curved poles more efficient brushes poles closer use split-ring commutator
use split-ring commutator[5]

10 (a) release of electrons due to heating/high temperature/heater
(b) X- and Y-plates labelled B1
anodes either order, labelled, either plates/cylinders with holes B1 closed tube of sensible shape
AND cathode AND anode(s) AND X- \& Y- plates, all three features in correct order
labels not needed for last mark but if given must be correct
(c) change current in filament/cathode/heater IGNORE limit

OR change temperature/heat/power/energy of filament/cathode/heater
OR change cathode-anode p.d./voltage
OR change charge/voltage of grid
$\begin{array}{lll}\text { (d) (i) } & (I=) Q / t \text { in any form } & \\ & \text { C1 } \\ 0.0019 \mathrm{~A} \mathrm{OR} 1.9 \times 10^{-3} \mathrm{~A} \text { OR } 1.9 \mathrm{~mA} & \mathrm{~A} 1\end{array}$
$\begin{array}{lll}\text { (ii) }(E=) \text { VIt OR VQ in any form, words, symbols, numbers (accept } t=5 \mathrm{~s}) & \text { C1 } \\ 190 \mathrm{~J} \text { OR candidate's } I \times 100000 \text { correctly evaluated } & \text { A1 }\end{array}$

11 (a) Pt OR $1.2 \times 10^{4} \times 9$ OR $1.2 \times 10^{4} \times(11-2) \quad$ C1
($l=$) E/m OR E/0.36 OR Pt/m OR Pt/0.36 C1
$3 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ A1
(b) (i) liquid ignore vapour/gas/water
(ii) move around more rapidly / faster / more KE ignore start to vibrate etc but accept starts to vibrate faster move further apart / spreads out (NOT molecules expand) any $2 \quad \mathrm{~B} 1$ break free / evaporate / overcome bonds / overcome forces of attraction /escape / change state (accept boils) convection (current)

