MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0625 PHYSICS

0625/32
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

NOTES ABOUT MARK SCHEME SYMBOLS \& OTHER MATTERS

M marks	are method marks upon which further marks depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent marks can be scored.
B marks:	are independent marks, which do not depend on other marks. For a B mark to scored, the point to which it refers must be seen specifically in the candidate's

A marks In general A marks are awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded.
It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. However, correct numerical answers with no working shown gain all the marks available.

C marks are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored.
A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.
brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets.
e.g. $10(\mathrm{~J})$ means that the mark is scored for 10 , regardless of the unit given.
underlining indicates that this must be seen in the answer offered, or something very similar.
OR / or indicates alternative answers, any one of which is satisfactory for scoring the marks.
e.e.o.o. means "each error or omission".
o.w.t.t.e. means "or words to that effect".

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit.

Not/NOT Indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Ignore Indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

ecf meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions.
This indicates that if a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but only applies to marks annotated ecf.

Sig. figs. Answers are normally acceptable to any number of significant figures ≥ 2. Any exceptions to this general rule will be specified in the mark scheme. In general, accept numerical answers, which, if reduced to two significant figures, would be right.

Units Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.

Arithmetic errors Deduct one mark if the only error in arriving at a final answer is clearly an arithmetic one.

Transcription Deduct one mark if the only error in arriving at a final answer is because given or errors

Fractions These are only acceptable where specified.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

1 (a) $\Delta h=0.068 \mathrm{~m}$
use of $m g h$
C1
$0.054 \mathrm{~J} / \mathrm{Nm}$
A1
$\begin{array}{ll}\text { (b) } 1 / 2 m v^{2}=\text { candidate's (a) } & \mathrm{C} 1 \\ 1.2 \mathrm{~m} / \mathrm{s} \text { ecf from (a) } & \mathrm{A} 1\end{array}$
(c) (i) use of distance \div time \quad C1
$=1.1 \mathrm{~m} / \mathrm{s}$ A1
(ii) air or wind resistance / friction / heat / thermal energy

OR correct mention of experimental error e.g. width of cylinder
B1

2 (a) (i) use of $a=\Delta v / t$ in any form C1
$23.3 \mathrm{~m} / \mathrm{s}^{2}$ ignore sign
A1
(b) (i) 336000 J
(ii) $\frac{\text { use of power } \times \text { time }}{=180000 \mathrm{~J}}$

C1 A1
(iii) 54% OR 0.54
ecf from (i) and (ii)
B1
accept $(=180000 / 840000) 21 \%$ OR 0.21
(c) anything sensible for a moving vehicle, e.g. flywheel / capacitor / battery

M1 appropriate change for this device, for example:
flywheel: speed or kinetic energy
capacitor: voltage or charge or electrical energy
battery: voltage or charge or electrical or chemical energy

3 (a) $\rho g h$ in symbols, words or numbers \quad C1
700 Pa or $\mathrm{N} / \mathrm{m}^{2}$
(b) use of $F=p A$

C1
14.7 N ecf from (a) A1
(c) (30.9-14.7 = $) 16.2 \mathrm{~N}$ OR evidence of calculation of resultant

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

4 (a) molecules/atoms move more slowly
(b) larger surface area of walls OR atoms further apart OR atoms travel further
fewer collisions with walls/balloon (only penalise missing walls once in (a) or (b)) B1 lower pressure

5
(a) conduction rod / target / anode B1
copper / thickness of rod B1
good conductor / increases amount of conduction (of thermal energy)
$\begin{array}{lll}\text { (b) convection } & \text { fins } & \text { B1 } \\ & \text { large surface area / number of fins / spaces between fins } & \text { B1 } \\ & \text { large contact with air / allows air to rise between fins } & \text { B1 }\end{array}$
$\begin{array}{lll}\text { (c) radiation } & \text { fins / black surface / end of rod } & \text { B1 } \\ & \text { black surface / large surface area } & \text { B1 }\end{array}$
black surface / large surface area
good emitter / large radiating surface ignore absorber

6 (a) incident ray correct at 59°
(b) (i) $\begin{aligned} & \text { use of } n=\sin i / \sin r \\ & \left(r=\sin ^{-1}(\sin 59 / 1.33)\right)=40.1^{\circ} \quad \text { condone no unit } \\ & \text { only accept } 40^{\circ} \text { if working shown e.g. } \sin 59 / 1.33\end{aligned}$

C1
(ii) ray from A to B AND angle of refraction $=40^{\circ}$
(c) reflected ray at B, correct by eye
(d) emerging ray refracted away from normal B1

7 (a) (i) $320-350 \mathrm{~m} / \mathrm{s}$ condone $100-999 \mathrm{~m} / \mathrm{s}$ B1
(ii) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ condone $2-4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(b) use of $v=f \lambda$
correct evaluation of candidate's (a)(i)/1.2
($330 \mathrm{~m} / \mathrm{s}$ gives 275 Hz)
(c) (i) correct evaluation of candidate's (a)(i) $\times 4.8$
($330 \mathrm{~m} / \mathrm{s}$ gives 1584 m)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

(ii) clear statement that light travels instantaneously o.w.t.t.e.

OR distance of thunderstorm same as distance travelled by sound
OR thunder and lightning caused by same event
OR negligible wind
B1

8 (a) compression
B1
rarefaction
B1
(b) cone moves forward / in direction of travel of wave

OR cone pushes air particles closer o.w.t.t.e.
B1
cone moves backwards / away from direction of travel of wave
OR cone causes empty spaces o.w.t.t.e.
(c) (i) loudness increases AND pitch same B1
(ii) loudness same AND pitch increases

B1

9 (a) (i) $1 / R_{\mathrm{p}}=1 / R_{1}+1 / R_{2} \mathrm{OR}\left(R_{\mathrm{p}}=\right) R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ in any form
B1
(ii) 1.5Ω

B1
(b) (i) correct position, allow across ammeter as well B1
(ii) use of $V=I R$ in any form C1
2.4 V OR $1.6 \times$ candidate's $R_{\mathrm{p}} \mathrm{V}$
(c) reduced accept current decreases

B1

10 (a) decreases / low / very low / zero
B1
(b) (i) ecf from (a), both answers must be consistent with candidate's (a)

	decreases / low / very low					increases / high / v. high / > 5V			
	light	high	OR	1		light	low	OR	-
AND	dark	low	OR	0	AND	dark	high	OR	1

$\begin{array}{lllll}\text { (ii) } & & \begin{array}{ll}\text { switch position } P & \text { high } \\ \text { AND } & \text { OR } \\ \text { switch position } Q & 1 \\ \text { low } & \text { OR }\end{array} & 0\end{array}$
(c) AND gate

B1
(d) transistor

B1

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2011	0625	32

(e) any 2 of:
(input) A high
(input) B high
C high
transistor switches on/works M1 yes / it would work A1

11 (a) magnetic flux changes / rod cuts magnetic field emf / voltage induced ignore current induced B1
(b) Mark (i) \& (ii) together
deflection increases/to R in (i) B1
deflection increases/to R in (ii) B1
correct reason in (i) or (ii) AND consistent with deflection:
in (i) or (ii) rate of change of flux (linkage) increases
in (i) more (magnetic) field lines cut/stronger (magnetic) field cut
in (ii) rod moves faster/field lines cut faster
B1
(iii) no deflection AND no (magnetic) field lines cut/no change of flux (linkage)

B1

12 (a) (i) $x=88$
AND $y=38$
B1
(ii) 50

B1
(iii) 38

B1
(b) $\frac{\text { different numbers of neutrons / nucleons NOT different no of protons / electrons }}{\text { (strontium- } 90 \text { has) } 52 \text { neutrons / } 90 \text { nucleons OR } 2 \text { more neutrons / nucleons }}$

